• Title/Summary/Keyword: Gas-explosion

Search Result 645, Processing Time 0.023 seconds

Risk Analysis of Explosion in Building by Fuel Gas

  • Jo, Young-Do;Park, Kyo-Shik;Ko, Jae Wook
    • Corrosion Science and Technology
    • /
    • v.3 no.6
    • /
    • pp.257-261
    • /
    • 2004
  • Leaking of fuel gas in a building creates flammable atmosphere and gives rise to explosion. Observations from accidents suggest that some explosions are caused by quantity of gas significantly less than the lower explosion limit amount required to fill the whole confined space, which might be attributed to inhomogeneous mixing of the leaked gas. The minimum amount of leaked gas for explosion is highly dependent on the degree of mixing in the building. This paper proposes a method for estimating minimum amount of flammable gas for explosion assuming Gaussian distribution of flammable gas.

A Study on Optimum Pressure Vent of Experimental Booth by Gas Explosion

  • Leem, Sa-Hwan;Lee, Jong-Rark;Huh, Yong-Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.59-63
    • /
    • 2007
  • The purpose of this paper is to find optimum vent port of the booth for gas explosion experiment. Also, it is to understand the safety of the booth for explosion experiment which is installed to let the trainees for legal education which is managed by IGTT(Institute of gas technology training) blow the riskiness of explosion. Since the booth for gas explosion experiment is a confined space, we used the exhaust model for indoor explosion. As the result, it was safety calculated when the amount of leaking gas was close to the maximum of explosion limit on the explosion experiment.

  • PDF

A Phenomenological Review on the Damage of Hot Gas Parts caused by Explosion of Gas Turbine Cooling System (가스터빈 내부 냉각계통 발화에 의한 고온부품 손상의 현상학적 고찰)

  • Yu, Won-Ju;Lee, Seong-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.2
    • /
    • pp.75-82
    • /
    • 2010
  • Gas turbines for power generating operate in a very high temperature condition and use natural gas for fuel. For this reason, many cases of damage happen at hot gas parts which are severely affected by high temperature gas and many cases of explosion occur by fuel gas. So a lot of efforts should be made to prevent hot gas parts damage and gas explosion accidents. Though there are many damage cases and explosion accidents, it is very difficult to find out the root causes of hot gas parts damage caused by gas explosion due to gas leakage in the heat exchanger for air cooling and gas heating. To prevent gas turbine from damage caused by gas explosion, removal of leakage gas from gas turbine is inevitably required before firing the gas turbine and installing alarm systems is also required for detecting gas leakage at stop valve to turbine while shut down.

Estimate Minimum Amount of Methane for Explosion in a Confined Space (밀폐공간에서 메탄 폭발사고의 최소 가스누출량 예측)

  • Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.1-5
    • /
    • 2017
  • Leaking of natural gas, which is mostly methane, in a confined living space creates flammable atmosphere and gives rise to explosion accident. The minimum amount of leaked methane for explosion is highly dependent on the degree of mixing in the confined space. This paper proposes a method for estimating minimum amount of flammable gas for explosion by using Gaussian distribution explosion model(GDEM) and experimental explosion data. The explosion pressure in the confined space can be estimated by assuming the Gaussian distribution of flammable gas along the height of an enclosure and estimating the maximum amount of gas within flammable limits, combustion of the estimated gas with constant volume and adiabatic or isothermal mixing in the confined space. The predicted minimum gas amount for an explosion is tied to explosion pressure that results in a given building damage level. The result shows that very small amount of methane leaking in the confined space may results in a serious gas explosion accident. This result could be applied not only to setting the leak criteria for developing a gas safety appliance but also to accident investigating of explosion.

The Study on Evaluation of Human Body Injury by Explosion of Portable Butane Gas Range (부탄연소기 폭발로 인한 인체 상해 평가에 관한 연구)

  • Kim, Eui Soo;Shim, J.H.;Kim, J.P.;Park, N.K.
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.60-67
    • /
    • 2016
  • The gas leak and explosion accident is able to give a fatal injury to nearby people from the explosion center and interest in effect of the explosion on the human body is increased. Accidents by Portable Butane Gas Range of a gas explosion accident occupy the most share. As a result, the injury on the human body frequently occur. However, It is situation that are experiencing difficulties in consequence analysis of explosion accidents owing to shortage of explosion power data and lack of research on the effect of the human body by the gas explosion. This paper acquire human injury data by performing the actual explosion experiment with Portable Butane Gas Range and evaluate power by explosion and effect of explosion on the human body to perform explosion simulation with LS-DYNA program. It is intended to contribute to the exact cause of the accident investigation and the same type of accident prevention.

A Study on the Explosion Relief Venting in the Gas Explosion (실내 가스 폭발시 폭발압력 방출에 관한 연구)

  • Oh, Kyu-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.71-77
    • /
    • 2005
  • This study aims to find the safe vent area to prevent a destruction of building by gas explosion in a building. Explosion vessel which used in this experiment is 1/5 scale down model of simple livingroom and its dimension is 100cm in length 60cm in width and 45cm in height. Liquified petroleum gas(LPG) was injected to the vessel to the concentration of 4.5vol%, and injection rate were varied in 1L/min or 4L/min. Gas mixture was ignited by the 10kV electric spark. For analysis the characteristics of vented explosion pressure according to the vent size and vent shape, its size and shape were varied. From the experiment, it was found that explosion pressure in the vented explosion :in affected by the gas injection rate, vent area and vent shape. And the vent area to volume ratio(S/V) to prevent the building destruction by explosion pressure, it is recommended that the design of vent area happened by the explosion should be above 1/500cm in S/V. And if the vent area has complicate structure in same area, vented explosion pressure will be higher than a single vent, and possibility of building destruction will increase. Therefore to effectively vent the explosion pressure for protect a building and residents from the gas explosion hazards, the same vent area should have a singular and constant shape in the cross-sectional area of the vessel.

A Study on the Explosion Characteristics of by Product Gas of Carbon Black Manufacturing Process (카본블랙 제조 부생가스의 폭발 특성연구)

  • Oh Kyu-Hyung;Lee Sung-Eun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.60-64
    • /
    • 2006
  • Explosion range and explosion characteristics of by product gas from carbon black manufacturing process were studied. About 75% of the by product gas were composed with water vapour and nitrogen. And the combustible component in the gas were hydrogen, methane, acetylene and carbon mono-oxide. Because of the combustible components in the by product gas there are explosion hazards in the gas handling process. Explosion range of the gas by experiment was from 17.1% to 70.7% and the value has considerable difference with the calculated value from Lechatelier law. Explosion pressure of the gas was $5.4kg/cm^2$ and the average explosion pressure rise rate was $39.2kg/cm^2/s$. Based on the experimental result we can expect that a explosion or fire accident during the handling the gas can make a severe loss, therefore there should be a explosion prevention or protection measures in the gas handling process.

  • PDF

A study on the pressure behaviour during the rupture by gas explosion

  • Kim, Min-Kyu;Oh, Kyu-Hyung;Kim, Hong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.275-281
    • /
    • 1997
  • The destruction by accident is affected by the blast of explosion. However, there are few of research on the external effect of vented gas explosions. Therefore it is necessary to study the effect of vented explosion. This study aims to find the characteristics of gas explosion, and the effect of vented gas explosion. Using an explosion chamber, we obtained a LPG explosion characteristics according to the vent size and concentration. The result of experiment showed that the explosion pressure effect to external space was much stronger than inner space during the course of a gas explosion. And the external pressure become higher in explosion pressure as the vent diameter become smaller.

  • PDF

A Study on Physicochemical Characteristics of Hydrogen Gas Explosion (수소가스 폭발의 물리화학적 특성 연구)

  • Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • Hydrogen is considered to be the most important future energy carrier in many applications reducing significantly greenhouse gas emissions, but the explosion safety issues associated with hydrogen applications need to be investigated and fully understood to be applicable as the carrier. The risk associated with a explosion depends on an understanding of the impacts of the explosion, particularly the pressure-time history during the explosion. This work provides the effects of explosion parameters, such as specific heat ratio of burned and unburned gas, equilibrium maximum explosion pressure, and burning velocity, on the pressure-time history with flame growth model. The pressure-time history is dominantly depending on the burning velocity and equilibrium maximum explosion pressure of hydrogen-air mixture. The pressure rise rate increase with the burning velocity and equilibrium maximum explosion pressure. The specific heat ratio of unburned gas has more effect on the final explosion pressure increase rate than initial explosion pressure increase rate. However, the specific heat ratio of burned gas has more influence on initial explosion pressure increase rate. The flame speeds are obtained by fitting the experimental data sets. The flame speeds for hydrogen in air based on our experimental data is very low, making a transition from deflagration to detonation in a confined space unlikely under these conditions.

Effect of Non-uniform Concentration on Gas Explosion (불균일 농도가 가스 폭발에 미치는 영향)

  • Kim Sang Sub;Jang Gi Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.14-19
    • /
    • 2003
  • Generally the accident by gas explosion in the working place is occurred at the condition of non-uniform mixture rather than uniform one. This study could predict the explosion phenomenon of non-uniform mixture with model explosion chamber which realize various practical conditions As a result, the mixing level of gas in the chamber depends on discharge area and velocity when there is gas discharge in certain space. In addition, as non-uniform increases, explosion pressure and its increasing rate decrease. However, firing risk after the explosion flame by infrared heat increase due to the increase of residence time of flame.

  • PDF