• Title/Summary/Keyword: Gas-Turbine Blade

Search Result 191, Processing Time 0.035 seconds

A Study on Failure Rate Prediction of Aircraft Gas Turbine Engine Turbine Blade (항공기 가스터빈엔진 터빈블레이드의 고장률 예측에 관한 연구)

  • Kim, Chun-Yong;Choi, Se-Jong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.4
    • /
    • pp.21-26
    • /
    • 2019
  • The purpose of this study is to suggest a method for the efficient preventive maintenance of aircraft gas turbine engine turbine blades. For this study, the types and characteristics of gas turbine engines and its turbine blades were studied, the turbine blade defect types that caused an In-Flight Shut Down(IFSD) were analyzed, the blade failure rate according to the blade life cycle was analyzed through the Weibull distribution, one of the statistical techniques. Through these research results, it is possible to supplement the problems of the life cycle management and maintenance method of the turbine blade, and to suggest the measures to strengthen the preventive maintenance of the turbine blade. In this analysis, when total cycle of turbine blade exceeds 18,000 cycles, the failure rate is over 98%, and then the special management measures are required.

Investigation of the High Cycle Fatigue Crack of the Gas Turbine Compressor Blade Using Finite Element Analysis (유한요소해석을 이용한 가스터빈 압축기 블레이드 피로균열 해석)

  • Yun, Wan-No;Kim, Jun-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.107-112
    • /
    • 2010
  • A gas turbine consists of an upstream compressor and a downstream turbine with a combustion chamber, and also the compressor and the turbine are generally coupled using a single shaft. Large scale gas turbine compressor is designed as multi-stage axial flow and the blade is fan-type which is thick and wide. Recently radial cracking happens occasionally at the compressor blade tip of large scale gas turbine. So, FEM was performed on the compressor blade and vibration modes and dynamic stresses were analyzed. According to the analysis, 9th natural frequency mode of the blade, which is 2 strip mode, is near the vane passing frequency by the vane located at the upstream of the blade.

The Heat Transfer Analysis of the First Stage Blade (발전용 가스터빈 1단 동익 열전달 해석)

  • Hong, Yong-Ju;Choi, Bum-Seog;Park, Byung-Gyu;Yoon, Eui-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.30-35
    • /
    • 2001
  • To get higher efficiency of gas turbine, The designer should have more higher turbine inlet temperature (TIT). Today, modem gas turbine having sophisticated cooling scheme has TIT above $1,700^{\circ}C$. In the korea, many gas turbine having TIT above $1,300^{\circ}C$ was imported and being operated, but the gas with high TIT above $1,300^{\circ}C$ in the turbine will give damage to liner of combustor, and blade of turbine and etc. So frequently maintenance for parts enduring high temperature was performed. In this study, the heat transfer analysis of cooling air in the internal cooling channel (network analysis) and temperature analysis of the blade (Finite Element Analysis) in the first stage rotor was conducted for development of the optimal cooling passage design procedure. The results of network analysis and FEM analysis of blade show that the high temperature spot are occured at the leading edge, trailing edge near tip, and platform. so to get more reliable performance of gas turbine, the more efficient cooling method should be applied at the leading edge and tip section. and the thermal barrier coating on the blade surface has important role in cooling blade.

  • PDF

Performance Analysis of a Steam Injected Gas Turbine Combined Heat and Power System Considering Turbine Blade Temperature Change (터빈 블레이드 온도 변화를 고려한 증기분사 가스터빈 열병합발전 시스템의 성능해석)

  • Kang, Soo Young;Kim, Jeong Ho;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.18-24
    • /
    • 2012
  • This study simulated the operation of a steam injected gas turbine combined heat and power (CHP) system. A full off-design analysis was carried out to examine the change in the turbine blade temperature caused by steam injection. The prediction of turbine blade temperature was performed for the operating modes suggested in the previous study where the limitation of compressor surge margin reduction was analyzed in the steam injected gas turbine. It was found that both the fully injected and partially injected operations suggested in the previous study would cause the blade temperature to exceed that of the pure CHP operation and the under-firing operation would provide too low blade temperature. An optimal operation was proposed where both the turbine inlet temperature and the injection amount were modulated to keep both the reference turbine blade temperature and the minimum compressor surge margin. The modulation was intended to maintain a stable compressor operation and turbine life. It was shown that the optimal operation would provide a larger power output than the under-firing operation and a higher efficiency than the original partially injected operation.

Experimental and numerical investigation on gas turbine blade with the application of thermal barrier coatings

  • Aabid, Abdul;Jyothi, Jyothi;Zayan, Jalal Mohammed;Khan, Sher Afghan
    • Advances in materials Research
    • /
    • v.8 no.4
    • /
    • pp.275-293
    • /
    • 2019
  • The engine parts material used in gas turbines (GTs) should be resistant to high-temperature variations. Thermal barrier coatings (TBCs) for gas turbine blades are found to have a significant effect on prolonging the life cycle of turbine blades by providing additional heat resistance. This work is to study the performance of TBCs on the high-temperature environment of the turbine blades. It is understood that this coating will increase the lifecycles of blade parts and decrease maintainence and repair costs. Experiments were performed on the gas turbine blade to see the effect of TBCs in different combinations of materials through the air plasma method. Three-layered coatings using materials INCONEL 718 as base coating, NiCoCrAIY as middle coating, and La2Ce2O7 as the top coating was applied. Finite element analysis was performed using a two-dimensional method to optimize the suitable formulation of coatings on the blade. Temperature distributions for different combinations of coatings layers with different materials and thickness were studied. Additionally, three-dimensional thermal stress analysis was performed on the blade with a commercial code. Results on the effect of TBCs shows a significant improvement in thermal resistance compared to the uncoated gas turbine blade.

A Study on Coupled Field Analysis of 3-D Gas Turbine Blade (3차원 가스터빈 블레이드의 연성 해석에 관한 연구)

  • Park Keun-Hyung;Min Taeg-Ki;Park Chang-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.38-43
    • /
    • 2006
  • A turbine blade operates under high temperature, high pressure, and the loads have the characteristics that the amplitudes change. Therefore, it is important to perform a stress analysis considering thermal and pressure loads. The purpose of this study is to investigate the effects of these loads on gas turbine blade through thermal stress analysis. The analysis results shows that pressure in gas fluid flow around blade is high in leading edge part, Gas temperature is connections with pressure of flow around blade. The distribution of stress from blade is appearing as is different at suction side and pressure side.

Study on Flow and Stress Analysis of Gas Turbine Blade (가스 터빈 블레이드의 유동 및 응력 해석에 관한 연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.67-72
    • /
    • 2011
  • Turbine blades operate under high temperature and pressure. The influence changes according to its width and angle. Thermal stress and pressure are important factors to analyze the stress distribution. The purpose of this study is to investigate the effects of loads on the gas turbine blade using thermal stress analysis. These analysis results show the gas fluid flow with a high pressure around the surface of blade. Gas temperature is related to the pressure of flow around the blade. The stress concentration around blade is shown and the concentration is due to the difference between suction side and pressure side of combustion gas.

Effect of Blade Tip Geometry on Heat Transfer Coefficients on Gas Turbine Blade Tips and Near Tip Regions (가스터빈 블레이드 끝단 형상에 따른 블레이드 끝단 및 그 주변에서의 열전달 계수 변화)

  • Kwak Jae-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.328-336
    • /
    • 2006
  • Detailed heat transfer coefficient distributions an two. types of gas turbine blade tip, plane tip and squealer tip, were measured using a hue-detection base transient liquid crystals technique.. The heat transfer coefficients an the shroud and near tip regions of the pressure and suction sides af the blade were also. measured. The heat transfer measurements were taken at the three different tip gap clearances af 1.0%, 1.5%, and 2.5% of blade span. Results shaw the overall heat transfer coefficients on the tip and shroud with squealer tip blade were lower than those with plane tip blade. By using squealer tip, however, the reductions af heat transfer coefficients near the tip regions of the pressure and suction sides were nat remarkable.

A Study on an Axial-Type 2-D Turbine Blade Shape for Reducing the Blade Profile Loss

  • Cho, Soo-Yong;Yoon, Eui-Soo;Park, Bum-Seog
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1154-1164
    • /
    • 2002
  • Losses on the turbine consist of the mechanical loss, tip clearance loss, secondary flow loss and blade profile loss etc.,. More than 60 % of total losses on the turbine is generated by the two latter loss mechanisms. These losses are directly related with the reduction of turbine efficiency. In order to provide a new design methodology for reducing losses and increasing turbine efficiency, a two-dimensional axial-type turbine blade shape is modified by the optimization process with two-dimensional compressible flow analysis codes, which are validated by the experimental results on the VKI turbine blade. A turbine blade profile is selected at the mean radius of turbine rotor using on a heavy duty gas turbine, and optimized at the operating condition. Shape parameters, which are employed to change the blade shape, are applied as design variables in the optimization process. Aerodynamic, mechanical and geometric constraints are imposed to ensure that the optimized profile meets all engineering restrict conditions. The objective function is the pitchwise area averaged total pressure at the 30% axial chord downstream from the trailing edge. 13 design variables are chosen for blade shape modification. A 10.8 % reduction of total pressure loss on the turbine rotor is achieved by this process, which is same as a more than 1% total-to-total efficiency increase. The computed results are compared with those using 11 design variables, and show that optimized results depend heavily on the accuracy of blade design.

Numerical Investigation of Flow and Heat Transfer Characteristics on the Gas Turbine Blade with a Squealer Tip (스퀼러팁을 이용한 가스터빈 내에서의 3차원 유동 및 열전달 특성에 관한 연구)

  • Jung, Jong-Hun;Moon, Young-J.;Kim, Jin-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.159-162
    • /
    • 2008
  • In this paper, a numerical simulation of three-dimensional flow field and heat transfer coefficient distribution are conducted for two types of gas turbine blade with plane and squealer tips. The numerical results show that gas turbine blade with squealer tip considerably changes the flow structures near the tip regions of pressure and suction sides, so the overall heat transfer coefficients on the tip and shroud with squealer tip are lower than those with the plane tip blade. Finally, the effect of tip gap clearance on the flow field and heat transfer characteristics are investigated.

  • PDF