• Title/Summary/Keyword: Gas-Phase

Search Result 3,253, Processing Time 0.031 seconds

AN ASSESSMENT SYSTEM OF ECO-FRIENDLINESS OF CONSTRUCTED FACILITY IN THE DESIGN PHASE USING VALUE ENGINEERING

  • Byung-Soo, Kim;Dong-Eun, Lee;Suk-Hyun, Kwon;Min-Kwon, Choe
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1625-1629
    • /
    • 2009
  • The new paradigm called 'Low Carbon Green Growth' involved in reducing greenhouse gas is on the rise as a critical issue worldwide. The essential of Kyoto protocol issued in 1997 is to achieve the sustainable economic growth environments by converting existing production system to eco-friendly one. The protocol imposes the liability to reduce greenhouse gas to the countries joined to it. The paradigm is directly involved in the energy consumption and environmental pollution caused by construction activities. Value Engineering which are mainly applied in the design phase in practice is a measure to improve the value of a constructed facility by analyzing and/or appraising the functions and costs of it. However, an appropriate method which assesses eco-friendliness of constructed facility has not been propose by researchers. This paper proposes a method which assesses the performance involved in eco-friendliness of constructed facility using Value Engineering (VE) in the design phase. The method estimates the environmental cost relative to the amounts of energy consumption and environmental pollution occurred over the entire project life cycle. The database called "Life Cycle Inventory DB", which stores information about the amounts of environmental pollution, is used. The algorithm which retrieves the amounts of environmental pollutions from the DB and converts them into environmental costs is developed. The algorithm is implemented into a system which quantifies the eco-friendliness of constructed facility in the design phase using VE.

  • PDF

CFD Simulation to Study Flow Characteristics in Cylindrical Gas-Liquid Cyclone Separator (실린더형 기-액 원심분리기 내의 유동특성 연구를 위한 CFD 시뮬레이션)

  • Park, Gyung-Do;Park, Jong-Chun;Kim, Kyung-Mi
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.280-287
    • /
    • 2014
  • In this paper, the numerical simulation of the gas-liquid flow in a cylinder cyclone separator is performed to investigate the flow characteristics using a commercial software, FLUENT, which solves the Reynolds-averaged Navier-Stokes(RaNS) equations. First, a single-phase flow with water in a gas-liquid cylinder cyclone(GLCC) separator is simulated and compared with the experiments(Farchi, 1990) and numerical simulations(Erdal, 1997). Then, the characteristics of the multi-phase flow for water-air, mud-only, and mud-air cases are discussed in the view point of the feasibilities for a mud handling system.

Thermodynamical and Experimental Analyses of Chemical Vapor Deposition of ATO from SnCl4-SbCl5-H2O Gas Mixture ($SnCl_4-SbCl_5-H_2O$ 기체혼합물로부터 ATO(Antimony Tin Oxide) 박막의 화학증착에 관한 열역학 및 실험분석)

  • 김광호;강용관;이수원
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.990-996
    • /
    • 1992
  • Chemical vapor deposition of ATO from SnCl4-SbCl5-H2O gas mixture was investigated with thermodynamic and experimental analyses. Electrical conductivity of the ATO film was much improved under deposition conditions of low input-gas ratio, Psbcl5/Psbcl4. This increase of the conductivity was attributed to donor electrons produced mainly by the pentavalent Sb ions in SnO2 lattice. However high input-gas ratio conditions produced an ATO film consisting of a mixture of SnO2 and very fine Sb2O5 phase. It was found that the deterioration of electrical conductivity and optical transmission of the film was caused by the deposition of fine Sb2O5 phase in the SnO2 matrix.

  • PDF

Analysis of unsteady temperature distribution in a cylinder for rifle barrel disign (원통형 용기의 비정상온도해석)

  • ;;;Lee, Hung Joo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.4
    • /
    • pp.173-180
    • /
    • 1979
  • Temperature distriburion in a hollow chlinder has been analyzed mathematically. Unsteady condition considered assumed a constant heat flux input from the inside. The results are compared with experimental results of surface temperature rise of a gun barrel during continuous firing. Their agreements are acceptable. Effects of various dimensionless parameters on the surface temperature rise are discussed. For small Biot numbers, the external survface temperature approaches more rapidly to the steady temperature. Temperature difference between internal and external surfaces becomes greater for small Biot number. Steady solution assumed that the gas temperature inside the cylinder varies periodically. Relative amplitude and phase angles between the gas temperature and the internal or external surface temperature are obtained. Phase angles become smaller for large radiancy of gas temperature variation, small external Biot number, or large internal biot number. Relative amplitudes become samller as radiancy of gas temperature variation and internal Biot number become smaller. or external Biot number becomes larger. The solution obtained in this paper can be applied to gun barrels, heat pipes used in heat excangers, and reciprocation engines.

Microstrucual Characterization of Vacuum Gas Gas Atomized AZ31+1%MM Alloy Powders (진공가스분무한 AZ31+1%MM 합금 분말의 미세조직 특성)

  • 김연옥
    • Journal of Powder Materials
    • /
    • v.6 no.3
    • /
    • pp.231-237
    • /
    • 1999
  • In this study, the characteristics of gas atomized Mg-3wt%Al-1wt%Zn-1wt%MM alloy powders under vacuum condition were investigated. In spite of the low fluidity and easy oxidation of the molten magnesium, the spherical powders could be successfully produced by using a modified three pieces nozzle attached to the gas atomization unit. It was found that most of the solidified powders less than 50$\mu$m in diameter were single crystal and the solidified structure showed a typical dendritic morphology due to supercooling prior to nucleation. The secondary dendrite arm spacing decreased as the size of powders decreased. The Mg-Al-Ce intermetallic compounds with chemically stable phase were found in the interdendritic regions of $\alpha$-Mg. It is considered that formation of the chemically stable phase may possibly affect to improve the corrosion resistance. Therefore, it is expected that the materials formed of these Mg-Al-Zn-MM alloy powders shows better mechanical properties and corrosion resistance due to the structural refinement.

  • PDF

Evaluation of Ozone for Oxide Superconductor Thin Film Fabrication (산화물 초전도 박막 제작을 위한 오존의 평가)

  • Lim, Jung-Kwan;Park, Yong-Pil;Lee, Hee-Kab
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1230-1233
    • /
    • 2004
  • Ozone is useful oxidizing gas for the fabrication of oxide thin films. Accordingly researching on oxidizing gas is required. In order to obtain high quality oxide thin films, higher ozone concentration is necessary. In this paper oxidation property was evaluated relation between oxide gas pressure and inverse temperature(CuO reaction). The obtained condition was formulated by the fabrication of Cu metal thin film by co-deposition using the ion Beam Sputtering method. Because the CuO phase peak appeared at the XRD evaluation of the CuO thin film using ozone gas, this study has succeeded in the fabrication of the CuO phase at $825^{\circ}C$.

  • PDF

A Study on the Effect of the $CO_2$ Gas on the Growth Mechanism of the Nitrocarburized Layer (연질화층의 성장기구에 미치는 $CO_2$가스의 영향에 관한 연구)

  • Lee, Gu-Hyeon
    • 연구논문집
    • /
    • s.25
    • /
    • pp.175-184
    • /
    • 1995
  • Mechanical properties of the gas nitrocarburized product depend on the surface compound layer and the diffusion zone formed. The compound layer improves the wear resistance, and the corrosion resistance. Though phase composition, pore layer and growth rate of the compound layer varies according to the treatment time, temperature and the kind of the steel substrate, they are strongly influenced by the environmental gas composition. In the current study, the growth behavior of the compound layer and diffusion zone of the carbon steel and the alloy steel upon nitrocarburizing treatment at $570^{\circ}C$, and the phase composition and the variation in the growth rate of the compound layer according to the variation of the gas environment which was the medium of the nitriding and carburizing reaction were investigated.

  • PDF

Characteristics of Oxidizing Gas for BSCCO Thin Film Fabrication (BSCCO 박막 제작을 위한 산화가스의 특성)

  • Lim, Jung-Kwan;Park, Yong-Pil;Jang, Kyung-Uk;Lee, Hee-Kab
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.110-113
    • /
    • 2005
  • Ozone is useful oxidizing gas for the fabrication of BSCCO thin films. In order to obtain high quality oxide BSCCO thin films, higher ozone concentration is necessary. The growth rates of the films was set in the region from 0.17 to 0.27 nm/min. MgO(100) was used as a substrate. In this paper oxidation property was evaluated relation between oxide gas pressure and inverse temperature(CuO reaction). The obtained condition was formulated by the fabrication of Cu metal thin film by co-deposition using the Ion Beam Sputtering method. Because the CuO phase peak appeared at the XRD evaluation of the CuO thin film using ozone gas, this study has succeeded in the fabrication of the CuO phase at $825^{\circ}C$.

  • PDF

Temperature measurement of the spray flame using micro scale absorption bands and line strength (마이크로 스케일의 흡수선과 흡수강도를 이용한 분무화염의 온도측정)

  • Choi, G.M.
    • Journal of ILASS-Korea
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2002
  • It is necessary to develope a high frequency diode laser sensor system based on the absorption spectroscopy for the measurement of temperature of the spray flame. DFB diode laser operating near $2.0{\mu}m$ was used to scan over selected $H_2O$ transitions near $1.9{\mu}m\;and\;2.2{\mu}m$, respectively. The measurement sensitivity at wide range of sweep frequency was evaluated using multi-pass cell containing $CO_2$ gas. This diode laser absorption sensor with high temporal resolution up to 10kHz was applied to measure the gas temperature in the spray flame region of liquid-gas 2-phase counter flow flame. The successful demonstration of time series temperature measurement in the spray flame gives us motivation of trying to establish non-intrusive temperature measurement method in the practical spray flame.

  • PDF

Evaluation of Oxidation Ozone for Superconductor Thin Film Growth (초전도 박막 제작을 위한 산화 오존의 평가)

  • Lim, Jung-Kwan;Park, Yong-Pil;Lee, Hee-Kab
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.35-38
    • /
    • 2004
  • Ozone is useful oxidizing gas for the fabrication of oxide thin films. Accordingly researching on oxidizing gas is required. In order to obtain high quality oxide thin films, higher ozone concentration is necessary. In this paper oxidation property was evaluated relation between oxide gas pressure and inverse temperature(CuO reaction). The obtained condition was formulated by the fabrication of Cu metal thin film by co-deposition using the Ion Beam Sputtering method. Because the CuO phase peak appeared at the XRD evaluation of the CuO thin film using ozone gas, this study has succeeded in the fabrication of the CuO phase at $825^{\circ}C$.

  • PDF