• 제목/요약/키워드: Gas velocity

검색결과 1,822건 처리시간 0.033초

지중 매설 가스 배관의 열차 주행 속도에 따른 진동 속도 특성 (Vibration Velocity Response of Buried Gas Pipelines according to Train Speed)

  • 김미승;선진선;김건;김문겸
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.561-566
    • /
    • 2008
  • Recently, because of development of the high speed train technology, the vibration loads by train is significantly increased ever than before. This buried gas pipelines are exposed to both repeated impact loads, and, moreover, they have been influencing by vibration loads than pipeline which is not located under vehicle loads. The vibration characteristic of pipeline is examined by dynamic analysis, and variable is only train speed. Since an effect of magnitude of vibration loads is more critical than cover depth, as increasing the train speed, the vibration speed of buried pipelines is also increased. The slope of vibration velocity is changed by attenuation of wave, at train speed, 300 km/h. From the analysis results, the vibration velocity of pipelines is satisfied with the vibration velocity criteria which are established by Korea Gas Corporation. The results present operation condition of pipelines under rail loads has fully sound integrity based on KOGAS specification.

  • PDF

기체온도 측정을 위한 초음파 계측에 관한 연구 (A Study on Ultrasonic Technique for Measuring Gas Temperature)

  • 윤천한;최영;전흥신
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.893-900
    • /
    • 1999
  • Measuring temperature with ultrasonic wave apparatus is desirable in the cue of gas below $300^{\circ}$ because of the fact that the temperature of gas is the function of only sound velocity. In this study, being used a heatable wind channel and a blower. the variation of temperature is observed in accordance with flow rate(air velocity). The frequency modulation method is used to measure the temperature which is varying in hot air flow up to $100^{\circ}$. The length changed in the position of ultrasonic sensors is considered. Also. the effects of air velocity at the same temperature and various facing angles of ultrasonic sensors are considered. As a result of this study. it has been found that the temperature in gas flow is correctly measured regardless of both the distance of ultrasonic sensors and the variation of air velocity. and that there is just a little influence of facing angles.

Gas and Stellar Kinematics of 9 Pseudo Bulge Galaxies

  • Jo, Kooksup;Woo, Jong-Hak;Matsuoka, Kenta;Cho, Hojin
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.78.4-79
    • /
    • 2015
  • We present the spatially resolved kinematics of ionized gas and stars along the major axis of 9 pseudo bulge galaxies. Using the high quality long-slit spectra obtained with the FOCAS at the Subaru telescope, we measured the flux, velocity, and velocity dispersion of the [OIII] and $H{\beta}$ lines to determine the size of the narrow-line region, rotation curve, and the radial profile of velocity dispersions. We compare ionized gas kinematics and stellar kinematics to investigate whether ionized gas shows any signs of outflows and whether stars and ionized gas show the same sigma-dip feature (i.e., decrease of velocity dispersion) at the very center.

  • PDF

Gas and Stellar Kinematics of 9 Pseudo Bulge Galaxies

  • Jo, Kooksup;Woo, Jong-Hak
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.69.1-69.1
    • /
    • 2014
  • We present the spatially resolved kinematics of ionized gas and stars along the major axis of 9 pseudo bulge galaxies. Using the high quality long-slit spectra obtained with the FOCAS at the Subaru telescope, we measured the flux, velocity, and velocity dispersion of the [OIII] and $H{\beta}$ lines to determine the size of the narrow-line region, rotation curve, and the radial profile of velocity dispersions. We compare ionized gas kinematics and stellar kinematics to investigate whether ionized gas shows any signs of outflows and whether stars and ionized gas show the same sigma-dip feature (i.e., decrease of velocity dispersion) at the very center.

  • PDF

Two-dimension Numerical Simulation of Stack Flue Gas Dispersion

  • Park, Young-Koo;Wu, Shi-Chang
    • 한국응용과학기술학회지
    • /
    • 제29권1호
    • /
    • pp.33-39
    • /
    • 2012
  • A numerical simulation of plume from a stack into atmospheric cross flow is investigated using a two-dimension model. The simulation is based on the ${\kappa}{\sim}{\varepsilon}$ turbulence model and a finite volume method. In this paper, it mostly researches how the wind velocity affects the flue gas diffusion from an 80 m high stack. Wind velocity is one of the most important factors for flue gas diffusion. The plume shape size, the injection height, the NO pollutant distribution and the concentration at the near ground are presented with two kinds of wind velocities, 1 m/s and 5 m/s. It is found that large wind velocity is better for flue gas diffusion, it generates less downwash. Although the rise height is lower, the pollutant dilutes faster and more sufficient.

A Census of Ionized Gas Outflows in Local Type-2 AGNs

  • Bae, Hyun-Jin;Woo, Jong-Hak
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.58.1-58.1
    • /
    • 2014
  • Energetic gas outflows from active galactic nuclei (AGNs) may have a crucial role in galaxy evolution. In this contribution, we present a census of ionized gas outflows using a large sample (~23,000) of local (z < 0.1) type-2 AGNs selected from the Sloan Digital Sky Survey DR 7. By measuring the velocity offset of narrow emission lines, i.e., [O III] ${\lambda}5007$ and the Balmer lines, with respect to the systemic velocity measured from the stellar absorption lines, we find ~47% of AGNs showing an [O III] line-of-sight velocity offset ${\geq}20km\;s-1$. The fraction in type-2 AGNs is similar to that in type-1 AGNs after considering the projection effect. AGNs with larger [O III] velocity offsets, in particular with no or weak $H{\alpha}$ velocity offsets, tend to have higher Eddington ratios, implying that the [O III] velocity offset is related to on-going black hole activity. Also, we find the different distributions of the host galaxy inclination between the AGNs with blueshifted [O III] and the AGNs with redshifted [O III], supporting the model of biconical outflow with dust obscuration. Meanwhile, for ~3% of AGNs, [O III] and $H{\alpha}$ exhibit comparable large velocity offsets, suggesting a more complex gas kinematics than decelerating outflows in the narrow-line region.

  • PDF

가스 하이드레이트 부존층의 하부 경계면을 규명하기 위한 심도영역 탄성파 구간속도 분석 (Seismic interval velocity analysis on prestack depth domain for detecting the bottom simulating reflector of gas-hydrate)

  • 고승원;정부흥
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.638-642
    • /
    • 2005
  • For gas hydrate exploration, long offset multichannel seismic data acquired using by the 4km streamer length in Ulleung basin of the East Sea. The dataset was processed to define the BSRs (Bottom Simulating Reflectors) and to estimate the amount of gas hydrates. Confirmation of the presence of Bottom Simulating reflectors (BSR) and investigation of its physical properties from seismic section are important for gas hydrate detection. Specially, faster interval velocity overlying slower interval velocity indicates the likely presences of gas hydrate above BSR and free gas underneath BSR. In consequence, estimation of correct interval velocities and analysis of their spatial variations are critical processes for gas hydrate detection using seismic reflection data. Using Dix's equation, Root Mean Square (RMS) velocities can be converted into interval velocities. However, it is not a proper way to investigate interval velocities above and below BSR considering the fact that RMS velocities have poor resolution and correctness and the assumption that interval velocities increase along the depth. Therefore, we incorporated Migration Velocity Analysis (MVA) software produced by Landmark CO. to estimate correct interval velocities in detail. MVA is a process to yield velocities of sediments between layers using Common Mid Point (CMP) gathered seismic data. The CMP gathered data for MVA should be produced after basic processing steps to enhance the signal to noise ratio of the first reflections. Prestack depth migrated section is produced using interval velocities and interval velocities are key parameters governing qualities of prestack depth migration section. Correctness of interval velocities can be examined by the presence of Residual Move Out (RMO) on CMP gathered data. If there is no RMO, peaks of primary reflection events are flat in horizontal direction for all offsets of Common Reflection Point (CRP) gathers and it proves that prestack depth migration is done with correct velocity field. Used method in this study, Tomographic inversion needs two initial input data. One is the dataset obtained from the results of preprocessing by removing multiples and noise and stacked partially. The other is the depth domain velocity model build by smoothing and editing the interval velocity converted from RMS velocity. After the three times iteration of tomography inversion, Optimum interval velocity field can be fixed. The conclusion of this study as follow, the final Interval velocity around the BSR decreased to 1400 m/s from 2500 m/s abruptly. BSR is showed about 200m depth under the seabottom

  • PDF

Experimental Study on Comparison of Flame Propagation Velocity for the Performance Improvement of Natural Gas Engine

  • Chung Jin Do;Jeong Dong Soo
    • 한국환경과학회지
    • /
    • 제14권1호
    • /
    • pp.15-22
    • /
    • 2005
  • Natural gas possesses several characteristics that make it desirable as an engine fuel; 1)lower production cost, 2)abundant commodity and 3)cleaner energy source than gasoline. Due to the physics characteristics of natural gas, the volumetric efficiency and flame speed of a natural gas engine are lower than those of a gasoline engine, which results in a power loss of $10-20{\%}$ when compared to a normal gasoline engine. This paper describes the results of a research to improve the performance of a natural gas engine through the modification and controls of compression ratio, air/fuel ratio, spark advance and supercharging and method of measuring flame propagation velocity. It emphasizes how to improve the power characteristics of a natural gas engine. Combustion characteristics are also studied using an ion probe. The ion probe is applied to measure flame speed of gasoline and methane fuels to confirm the performance improvement of natural gas engine combustion characteristics.

쓰레기 매립지 가스 포집관에서 가스조성에 따른 계측오차의 최소화 (Minimizing the Measurement Error from Gas Compositions of Gas Vent in Sanitary Landfill)

  • 이해승;이문형
    • 환경위생공학
    • /
    • 제17권1호
    • /
    • pp.28-35
    • /
    • 2002
  • 본 연구 목적은 계측저항이 없는 열선유속계를 이용하여 매립지 가스의 유량을 산정할 때 가스조성에 의해 발생되는 계측오차를 최소화할 수 있는 방안을 제시하고자하였다. Rotor meter와 가스조성 밀도를 이용하여 산정한 관 중심유속을 계측저항이 없는 열선유속계를 이용하여 구한 관 중심유속을 비교함으로서 계측오차를 측정하였다. 실험결과 열선 유속계와 rotor meter를 이용한 매립지 가스유속 계측오차의 최소화 방안을 통하여 매립지 가스유량의 오차 범위를 10% 이내로 최소화 할 수 있는 것으로 조사되었다.

감압법을 이용한 메탄 하이드레이트 생산에 대한 연구 (Study on methane hydrate production using depressurization method)

  • 박성식;김남진
    • 한국태양에너지학회 논문집
    • /
    • 제30권1호
    • /
    • pp.34-41
    • /
    • 2010
  • Gas hydrates are solid solutions when water molecules are linked through hydrogen bonding and create host lattice cavities that can enclose many kinds of guest(gas) molecules. There are plenty of methane(gas) hydrate in the earth and distributed widely at offshore and permafrost. Several schemes, to produce methane hydrates, have been studied. In this study, depressurization method has been utilized for the numerical model due to it's simplicity and effectiveness. IMPES method has been used for numerical analysis to get the saturation and velocity profile of each phase and pressure profile, velocity of dissociation front progress and the quantity of produced gas. The values calculated for the sample length of 10m, show that methane hydrates has been dissolved completely in approximately 223 minutes and the velocity of dissociation front progress is 3.95㎝ per minute. The volume ratio of the produced gas in the porous media is found to be about 50%. Analysing the saturation profile and the velocity profile from the numerical results, the permeability of each phase in porous media is considered to be the most important factor in the two phase flow propagation. Consequently, permeability strongly influences the productivity of gas in porous media for methane hydrates.