• Title/Summary/Keyword: Gas valve

Search Result 693, Processing Time 0.024 seconds

Removal of residual VOCs in a collection chamber using decompression for analysis of large volatile sample

  • Lee, In-Ho;Byun, Chang Kyu;Eum, Chul Hun;Kim, Taewook;Lee, Sam-Keun
    • Analytical Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • In order to measure the volatile organic compounds (VOCs) of a sample which is too large to use commercially available chamber, a stainless steel vacuum chamber (VC) (with an internal diameter of 205 mm and a height of 50 mm) was manufactured and the temperature of the chamber was controlled using an oven. After concentrating the volatiles of the sample in the chamber by helium gas, it was made possible to remove residual volatile substances present in the chamber under reduced pressure ((2 ± 1) × 10-2 mmHg). The chamber was connected to a purge & trap (P&T) using a 6 port valve to concentrate the VOCs, which were analyzed by gas chromatography-mass spectrometry (GC-MS) after thermal desorption (VC-P&T-GC-MS). Using toluene, the toluene recovery rate of this device was 85 ± 2 %, reproducibility was 5 ± 2 %, and the detection limit was 0.01 ng L-1. The method of removing VOCs remaining in the chamber with helium and the method of removing those with reduced pressure was compared using Korean drinking water regulation (KDWR) VOC Mix A (5 μL of 100 ㎍ mL-1) and butylated hydroxytoluene (BHT, 2 μL of 500 ㎍ mL-1). In case of using helium, which requires a large amount of gas and time, reduced pressure ((2 ± 1) × 10-2 mmHg) only during the GC-MS running time, could remove VOCs and BHT to less than 0.1 % of the original injection concentration. As a result of analyzing volatile substances using VC-P&T-GC-MS of six types of cell phone case, BHT was detected in four types and quantitatively analyzed. Maintaining the chamber at reduced pressure during the GC-MS analysis time eliminated memory effect and did not affect the next sample analysis. The volatile substances in a cell phone case were also analyzed by dynamic headspace (HT3) and GC-MS, and the results of the analysis were compared with those of VC-P&T-GC-MS. Considering the chamber volume and sample weight, the VC-P&T configuration was able to collect volatile substances more efficiently than the HT3. The VC-P&T-GC-MS system is believed to be useful for VOCs measurement of inhomogeneous large sample or devices used inside clean rooms.

An Experimental Study on the Energy Separation of the $100Nm^3$/hr Vortex Tube for $CO_2$ Absorption ($CO_2$ 흡수용 $100Nm^3$/hr급 Vortex Tube의 에너지분리 특성에 관한 실험적 연구)

  • Kim, Chang-Su;Han, Keun-Hee;Park, Sung-Young
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.213-219
    • /
    • 2010
  • Vortex tube is the device that can separate small particles from the compressed gas, as well as compressed gas into hot and cold gas. Due to energy and particle separation ability, a vortex tube can be used as the main component of the $CO_2$ absorption device. In this study, experimental approach has been performed to analyze the energy separation characteristics of the vortex tube. To obtain the preliminary design data, energy separation characteristics of the vortex tube has been tested for orifice diameter, nozzle area ratio, and tube length. As a result, the orifice diameter is the major factor of the vortex tube design. The nozzle area ratio and tube length have a minor effect on the energy separation performance. For Dc=0.6D, AR=0.14~0.16, and L=16D, maximum energy separation has been occurred. The result from this study can be used as the basic design data of the $100Nm^3$/hr class vortex tube applied to the $CO_2$ absorption device. Compared with the $CO_2$ absorption process containing an absorption tower, the process with a vortex tube is expected to have a huge advantage of saving the installation space and the operating cost.

A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants (발전소의 스팀제어용 유압서보 액추에이터의 공기배출 밸브에 관한 연구)

  • Lee, Yong Bum;Lee, Jong Jik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.397-402
    • /
    • 2016
  • To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

Selection of Postweld Heat Treatment Condition of a High-Temperature and High-Pressure Forged Valve (고온고압용 단조밸브의 용접후열처리 조건 선정)

  • Park, Jae-Seong;Heo, Ki-Moo;Yoon, Sung-Hoon;Moon, Yoon-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.10 no.2
    • /
    • pp.48-59
    • /
    • 2014
  • Coupons which have same figure as weld joint of the forged steel valves and 1 inch nominal weld thickness were manufactured using ASTM A182 F92 material. After welding with GTAW method, the welded specimens have been post-weld heat treated at $705^{\circ}C$, $735^{\circ}C$, $750^{\circ}C$, $765^{\circ}C$, $795^{\circ}C$ and $825^{\circ}C$ for 1 hour per 1 inch nominal weld thickness each (Group 1) to evaluate characteristics of welds based on various holding temperature. Indeed, 3 welded specimens were post-weld heat treated for 30 minutes, 1 hour and 2 hour (Group 2) at $735^{\circ}C$ to evaluate characteristics of welds based on various holding time. Hardness values were measured at the weld metal, heat affected zone and base metal to observe hardness change depending on the condition. As a result of the evaluation, appropriate holding temperature for PWHT is proved as $750^{\circ}C$ and $765^{\circ}C$ for 1hour per 1 inch nominal weld thickness. Indeed, holding for 1 hour per 1 inch nominal weld thickness was insufficient for PWHT effect when the holding temperature was at $735^{\circ}C$. The microstructure of post-weld heat treated weld metal was determined as tempered-martensite structure.

  • PDF

Study on the Consequence Effect Analysis & Process Hazard Review at Gas Release from Hydrogen Fluoride Storage Tank (최근 불산 저장탱크에서의 가스 누출시 공정위험 및 결과영향 분석)

  • Ko, JaeSun
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.449-461
    • /
    • 2013
  • As the hydrofluoric acid leak in Gumi-si, Gyeongsangbuk-do or hydrochloric acid leak in Ulsan, Gyeongsangnam-do demonstrated, chemical related accidents are mostly caused by large amounts of volatile toxic substances leaking due to the damages of storage tank or pipe lines of transporter. Safety assessment is the most important concern because such toxic material accidents cause human and material damages to the environment and atmosphere of the surrounding area. Therefore, in this study, a hydrofluoric acid leaked from a storage tank was selected as the study example to simulate the leaked substance diffusing into the atmosphere and result analysis was performed through the numerical Analysis and diffusion simulation of ALOHA(Areal Location of Hazardous Atmospheres). the results of a qualitative evaluation of HAZOP (Hazard Operability)was looked at to find that the flange leak, operation delay due to leakage of the valve and the hose, and toxic gas leak were danger factors. Possibility of fire from temperature, pressure and corrosion, nitrogen supply overpressure and toxic leak from internal corrosion of tank or pipe joints were also found to be high. ALOHA resulting effects were a little different depending on the input data of Dense Gas Model, however, the wind direction and speed, rather than atmospheric stability, played bigger role. Higher wind speed affected the diffusion of contaminant. In term of the diffusion concentration, both liquid and gas leaks resulted in almost the same $LC_{50}$ and ALOHA AEGL-3(Acute Exposure Guidline Level) values. Each scenarios showed almost identical results in ALOHA model. Therefore, a buffer distance of toxic gas can be determined by comparing the numerical analysis and the diffusion concentration to the IDLH(Immediately Dangerous to Life and Health). Such study will help perform the risk assessment of toxic leak more efficiently and be utilized in establishing community emergency response system properly.

Corrosion Characteristics of Welding Zones Welded with 1.25Cr-0.5 Mo Filler Metal to Forged Steel for Piston Crown Material

  • Jeong, Jae-Hyun;Lee, Sung-Yul;Lee, Myeong-Hoon;Baek, Tae-Sil;Moon, Kyung-Man
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.54-58
    • /
    • 2015
  • A heavy oil of low quality has been mainly used in the diesel engine of the merchant ship as the oil price has been significantly jumped for several years. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, 1.25Cr-0.5Mo filler metal was welded with SMAW method in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. And, the corrosion resistance of the heat affected and weld metal zones was also increased than that of the base metal zone. Furthermore, it appeared that the corrosive products with red color and local corrosion like as a pitting corrosion were more frequently observed on the surface of the base metal zone compared to the heat affected and weld metal zones. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the 1.25Cr-0.5Mo electrode.

Virtual Home Training - Virtual Reality Small Scale Rehabilitation System (가상 홈 트레이닝 - 가상현실 기반 소근육 재활 시스템)

  • Yu, Gyeongho;Kim, Hae-Ji;Kim, Han-Seob;Lee, Jieun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.3
    • /
    • pp.93-100
    • /
    • 2018
  • This paper proposes a small-scale rehabilitation system that allows stroke patients to perform daily rehabilitation training in a virtual home. Stroke patients have limited activities of daily living due to paralysis, and there are many rehabilitation exercises for them to reproduce activities that take place in the house, such as turning lights on and off, door opening and closing, gas valve locking. In this paper, we have implemented a virtual home with the above mentioned daily rehabilitation training elements, by using virtual reality technology. We use Leap Motion, a hand motion recognition device, for rehabilitation of hands and fingers. It is expected that stroke patients can rehabilitate small muscles without having to visit the clinic with uncomfortable body, and will be able to get interesting rehabilitation training by avoiding monotony of existing rehabilitation tools.

Development of Xenon Feed System for a Hall-Effect Thruster to Space-propulsion Applications (우주추진용 홀방식의 전기추력기를 위한 제논연료공급장치 개발)

  • Kim, Youn-Ho;Kang, Seong-Min;Jung, Yun-Hwang;Seon, Jong-Ho;Wee, Jung-Hyun;Yoon, Ho-Sung;Choe, Won-Ho;Lee, Jong-Sub;Seo, Mi-Hui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.84-89
    • /
    • 2011
  • A Xenon Feed System (XFS) has been developed for hall-effect thruster to small satellite space-propulsion system applications. The XFS delivers low pressure gas to the Anode and Cathode of thruster head unit from a xenon storage tank. Accurate throttling of the propellant mass flow rate is independently required for each channel of the thruster head unit. The mass flow rate to each channel is controlled using the accumulator tank pressure regulation through a micron orifice and isolation valve. This paper discusses the Xenon Feed System design including the component selections, performance estimation and functional test.

Clinical Experience of Open Heart Surgery Under The Extracorporeal Circulation With Partial Hemodilution: Operation 16 Cases (혈희석 체외순환에 의한 개심수술: 16례 수술 경험)

  • 유회성
    • Journal of Chest Surgery
    • /
    • v.10 no.2
    • /
    • pp.299-314
    • /
    • 1977
  • Clinical experience on 16 cases of open heart surgery under the extracorporeal circulation with mild or moderate hypothermia and partial hemodilution technique at the National Medical Center during the period from June 1976 to October 1977. Nine of sixteen were congenital heart disease and seven were acquired heart disease. The age of the patient ranged between 6 and 48 years. The body weight varied from 18.5kg to 60kg and body surface area 0. 79-1.70m2. The average priming volume of pump oxygenator was 2080 ml, which was consisted fresh ACD blood, buffered Hartmann`s solution, Mannitol, 50% dextrose in water and Vit. C. The average hemodilution rate was 27%. The average flow 2.3 L/min/m2 or 80 ml/min and the duration of perfusion varied from 31 min to 270 min with average of 107 min. The perfusion was carried out under the mild or moderate hypothermia using core cooling alone in 10 cases, core cooling and local myocardial cooling with $0-4^{\circ}C$ physiologic saline in 2 cases. From a hemodynamic point of view, the blood pressure dropped down around 80 mmHg after the initiation of perfusion follwed by increase to safety level and stable during the perfusion. The central venous pressure remained within normal limits. In most cases, hemoglobin and hematocrit decreased during and after the perfusion. Hemogiobin level was decreased, average of 20.6 %, hematocrit 18.6%, pletelets 55% postoperatively. Plasma hemoglobin increased moderately, from preperfusion average valve of 7.79 mg % to post-perfusion value of 54.7 mg %. Electrolytes changes during cardiopulmonary bypass showed definite hypokalemia but changes of Na, Ca were not definite. Arterial blood gas analysis during cardiopulmonary bypass suggested that the metabolic acidosis which was accompanied by respiratory alkalosis which was corrected postoperatively. As the opera tive complication, transient hemoglobinuria in 4 cases and neurological signs in 2 cases were all cured. There were 2 death cases and operative mortality rate was 12.5%.

  • PDF

A Study on Estimating Real-time Thermal Load During GHP Operation in Heating Mode (GHP 난방 모드 운전시 실시간 부하 추정방법에 관한 연구)

  • Seo, Jeong-A;Shin, Young-Gy;Oh, Se-Je;Jeong, Sang-Duck;Ji, Kyoung-Chul;Jeong, Jin-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.32-37
    • /
    • 2011
  • The present study has been conducted to propose an algorithm regarding real-time load estimation of a gas engine-driven heat pump. In the study, thermal load of an indoor unit is estimated in terms of air-side and refrigerant-side. The air-side estimation is based on a typical heat exchanger model and is found to be in good agreement with experimental data. When it comes to the refrigerant-side load, a pressure difference across a valve must be estimated. For the estimation, it is assumed to be proportional to a bigger pressure difference that is available either by measurement or by estimation. Relative good agreement between the air- and refrigerant-sides suggests that the assumption may be plausible for the load estimation. The summed flow rate of all of indoor units is in good agreement with the throughput of the compressor which are calculated from the manufacturer's software. Accordingly, estimated thermal loads are also in good agreement. The proposed algorithm may be further developed for improved control algorithm and fault diagnosis.