• Title/Summary/Keyword: Gas valve

Search Result 696, Processing Time 0.027 seconds

The Performance and Emission of the Intake Port Injection Type Hydrogen Fueled Engine (흡기관 분사 방식 수소 연료 기관의 성능 및 배출물에 관한 연구)

  • 이형승;이석재;이종화;유재석;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.27-33
    • /
    • 1993
  • Using the solenoid driven gas injection valve, Hydrogen fuel supply system was made. It was attached to a single cylinder research engine and intake port injection type hydrogen fueled S.I. engine was constructed. Engine performance, emission characteristics, and abnormal combustion were studied through the engine test performed with the variations of fuel-air equivalence ratio and spark timing. Compared with gasoline, hydrogen burns so fast that cylinder peak pressure and temperature are higher and NO is emitted more at full load condition. IN the case of intake port injection type engine, COVimep becomes lower due to the well-mixing of air and fuel, and engine output is lower owing to the low volumetric efficiency. As fuel-air equivalence ratio goes up, the combustion speed increases, and COVimep decreases. NO emission peaks slightly lean of stoichiometric. As spark timing advances and fuel-air equivalence ratio goes up, the cylinder peak pressure and temperature become higher, so abnormal combustions take place easily.

  • PDF

Development of Auto- Equipment System for Single Crystalline growth (단결정 성장을 위한 자동화 설비 시스템 개발)

  • 조현섭
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.15-19
    • /
    • 2002
  • It is a quite quality concerming to the temperature of single cystalline growth as it does when we get most of heat treating products. It is also important factor to control the temperature when we make the A1203(single crystalline) used to artificial jewels, glass af watches, and heat resistant transparent glasses. Thus, it is a major interest to get the proper temperature in accordance with the time process while we are making mixture of oxygen and hydrogen to have the right tempearture. In this paper, we will study of electrical valve positioning system with DC-Motor for the gas mixture to improve the quality of products.

Clinical Comparison Between Inside Blood Flow Type and Outside Blood Flow Type in the Hollow Fiber Oxygenator (Hollow Fiber Oxygenator에서 Inside Blood Flow Type과 Outside Blood Flow Type의 임상적 비교)

  • 안재호
    • Journal of Chest Surgery
    • /
    • v.25 no.5
    • /
    • pp.451-457
    • /
    • 1992
  • The hollow fiber oxygenator is the most advanced one for the cardiopulmoanry bypass. They have two different types of the hollow fiber systems according to the way how the blood go through the fibers. One is inside blood flow type and the other outside type. In order to find out which is better to prevent blood cell destruction, we selected 40 valve replacing patients and divided them into 2 groups prospectively. In group I [n=20], inside blood flow type[BCM-7a], CO2 excretion is more effective than group II, that is partly because of the relative large surface area of the BCM-7. In group II [n=20], outside blood flow type [MAXIMAa], they have better quality to preserve platelet count. We also studied about several other items such as SaO2, Hemoglobin and RBC, WBC, fibrinogen, LDH, plasma hemoglobin, haptoglobulin and so on. But we cannot find any differences between two groups with any statistical meanings [p<0.05]. We conclude that both of two oxygenators are excellent in the aspects of gas exchange and blood cell preservation.

  • PDF

Friction Characteristics of the Tip Seal in a Scroll Compressor (스크롤 컴프레서 팁실의 마찰특성)

  • Jeong, Bong Soo
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.370-377
    • /
    • 2014
  • The basic elements in a rotary-type scroll compressor are two identical spiral scrolls containing refrigerant gas. The pressure variations in the compression pockets of a scroll compressor change the forces acting on the orbiting scroll, and these forces affect the dynamic behavior of the compression mechanism parts. To achieve high efficiency, using a self-sealing mechanism as a tip seal mechanism is very effective. Tip seals, which are placed on top of the scroll wraps, accomplish thrust sealing. This study calculates the friction force between the tip seal and the side plate of a scroll compressor using the numerical model considered in the Reynolds equation. The calculated friction force is verified by an experiment using a pin-on-disk apparatus. A hydraulic servo valve that controls the pressure of the oil hydraulic cylinder applies the normal load for the test, and a DC servo motor controls the sliding velocity of the disk. The friction force and normal load are measured by the force sensors attached to the supporting parts. The results show that the theoretical and experimental results are similar and that the friction is influenced by the viscosity of the oil and the sliding velocity of the scroll.

An Experimental Study on the Combustion and Emission Characteristics of the Early Injection in a Gasoline Direct Injection Engine Using Controlled Auto Ignition Combustion Method (CAI 연소 방법을 이용한 직분식 가솔린 엔진내의 조기 분사시 연소 및 배기 특성에 관한 실험적 연구)

  • Choi Young-Jong;Lee Ki-Hyung;Lee Chang-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.457-464
    • /
    • 2006
  • Controlled auto ignition (CAI) combustion, also known as HCCI (homogeneous charge compression ignition), offers the potential to simultaneously improve fuel economy and reduce emission. CAI-combustion was achieved in a single cylinder gasoline DI engine, with a cylinder running in a CAI mode. Standard components were used the camshafts which had been modified in order to restrict the gas exchange process. The effects of air-fuel ratio, residual EGR rate and injection timing such as early injection and late injection on the attainable CAI combustion region were investigated. The effect that injection timings on factor such as start of combustion, combustion duration and heat release rate was also investigated. From results early injection caused the mixture to ignite earlier and burn more quickly due to the exothermic reaction during the recompression and gave rise to good mixing of the fuel-air.

Design and Performance Evaluation of a Flow Regulator for Thrust Control of a Liquid Rocket Engine (액체로켓엔진 추력제어를 위한 유량제어밸브의 설계 및 성능 평가)

  • Jung, Tae-Kyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.443-446
    • /
    • 2012
  • A thrust control valve of a liquid rocket engine plays a role to increase or decrease the thrust of an LRE by modulating the flow rate of propellant into a gas-generator. This paper deals with a flow regulator that has functions of not only modulating thrust but also maintaining constant flow rate regardless of pressure change at inlet or outlet of the flow regulator. A direct acting flow regulator was fabricated and tested for the comparison of experimental and simulation results under steady-state conditions. The drawbacks and limitations of the flow regulator were analyzed. Also the new design of a flow regulator was proposed.

  • PDF

Numerical simulation of a regenerative thermal oxidizer for volatile organic compounds treatment

  • Hao, Xiaowen;Li, Ruixin;Wang, Jiao;Yang, Xinfei
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.397-405
    • /
    • 2018
  • As regulations governing the control of volatile organic compounds (VOCs) have become increasingly stringent in China, regenerative thermal oxidizers (RTOs) have been more frequently applied in medium- and high-concentration VOCs treatments. However, due to the lack of existing RTO-related research, experience remains a dominant factor for industrial application. This paper thus aimed to establish a model for industrial RTOs, using a transient simulation method and thermal equilibrium model to simulate the internal velocities and temperature distributions of an RTO across multiple cycles. A comparison showed an error of less than 5% between most correlating simulated and experimental measurement points, verifying that the simulation method was accurate. After verification, the velocity and temperature fields inside the RTO were simulated to study the uniformity of temperature and velocity within the packed beds: both fields displayed high uniformity after gas flowed through the honeycomb regenerator. The effects of air volume, VOCs concentrations, and valve switching times on the oxidation chamber temperature, RTO outlet temperature, and thermal efficiency (as well as their averages) were studied. The VOCs removal rate in this study was constantly above 98%, and the average thermal efficiency reached 90%.

A Reliability Model of Process Systems with Multiple Dependent Failure States (다중 종속 고장상태를 갖는 공정시스템의 신뢰성 모델)

  • Choi, Soo Hyoung
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.37-41
    • /
    • 2018
  • Process safety technology has developed from qualitative methods such as HAZOP (hazard and operability study) to semi-quantitative methods such as LOPA (layer of protection analysis), and quantitative methods are actively studied these days. Quantitative risk assessment (QRA) is often based on fault tree analysis (FTA). FTA is efficient, but difficult to apply when failure events are not independent of each other. This problem can be avoided using a Markov process (MP). MP requires definition of all possible states, and thus, generally, is more complicated than FTA. A method is proposed in this work that uses an MP model and a Weibull distribution model in order to construct a reliability model for multiple dependent failures. As a case study, a pressure safety valve (PSV) is considered, for which there are three kinds of failure, i.e. open failure, close failure, and gas tight failure. According to recently reported inspection results, open failure and close failure are dependent on each other. A reliability model for a PSV group is proposed in this work that is to reproduce these results. It is expected that the application of the proposed method can be expanded to QRA of various systems that have partially dependent multiple failure states.

Effects of CrN and TiN Coating by Hydrogen Embrittlement of Aluminum Alloys for Hydrogen Valves of Hydrogen Fuel Cell Vehicles on Mechanical Properties (수소연료전지 자동차의 수소밸브용 알루미늄 합금의 수소취화에 의한 기계적 특성에 미치는 CrN과 TiN 코팅의 영향)

  • Ho-Seong Heo;Dong-Ho Shin;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.232-241
    • /
    • 2023
  • The mechanical properties of the hydrogen valve responsible for supplying and blocking hydrogen gas in a hydrogen fuel cell electric vehicle (FCEV) were researched. Mechanical properties by hydrogen embrittlement were investigated by coating chromium nitride (CrN) and titanium nitride (TiN) on aluminum alloy by arc ion plating method. The coating layer was deposited to a thickness of about 2 ㎛, and a slow strain rate test (SSRT) was conducted after hydrogen embrittlement to determine the hydrogen embrittlement resistance of the CrN and TiN coating layers. The CrN-coated specimen presented little decrease in mechanical properties until 12 hours of hydrogen charging due to its excellent resistance to hydrogen permeation. However, both the CrN and TiN-coated specimens exhibited deterioration in mechanical properties due to the peeling of the coating layer after 24 hours of hydrogen charging. The specimens coated at 350 ℃ presented a significant decrease in ultimate tensile strength due to abnormal grain growth.

Performance Characteristics of Water-Chilling Heat Pump Using CO2 on Control of Inverter Frequency (인버터 주파수 제어에 따른 CO2용 수냉식 열펌프의 성능 특성)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4721-4726
    • /
    • 2010
  • The performance characteristics of water-chilling heat pump using CO2 for the control of inverter frequency was investigated experimentally. An experimental apparatus is consisted of a compressor, a gas cooler, an expansion valve, an evaporator and a liquid receiver. All heat exchangers used in the test rig are counter flow type heat exchangers with concentric dual tubes, which are made of copper. The gas cooler and the evaporator consist of 6 and 4 straight sections respectively arranged in parallel, each has 2.4m length. The experimental results summarize as the following: for constant inlet temperature of evaporator and gas cooler, as mass flow rate, compression ratio and discharge pressure increases with the inverter frequency. And heating capacity and compressor work increases, but coefficient of performance(COP) decreases with the inverter frequency of compressor. As inlet temperature of secondary fluid in the evaporator increases from $15^{\circ}C$ to $25^{\circ}C$, compression ratio and compressor work decreases, but mass flow rate, heating capacity and COP increases with the inverter frequency of compressor. The above tendency is similar with performance variation with respect to the variation of inverter frequency in the conventional vapor compression refrigeration cycle.