• Title/Summary/Keyword: Gas turbine control

Search Result 186, Processing Time 0.032 seconds

RCGA-Based Tuning of the PID Controller for Marine Gas Turbine Engines (RCGA에 기초한 선박 가스터빈 엔진용 PID 제어기의 동조)

  • So Myung-Ok;Jung Byung-Gun;Jin Gang-Gyoo;Jin Sun-Ho;Lee Yun-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.116-123
    • /
    • 2005
  • The PID controllers have been widely accepted in many industrial systems due to their robust performance in a wide range of operating conditions and their functional simplicity To implement a PID controller, its three parameters must be determined for the given plant. Conventional tuning methods are mainly based on experience and experiment and are lack of systematic procedure Recently. to overcome drawbacks of conventional tuning methods, genetic algorithms have been used, In this paper a real-coded genetic algorithm is employed to search for the optimal parameters of the PID controller for speed control of marine gas turbine engines. Simulation results show the effectiveness of the proposed scheme.

A CFD Study on Thermo-Acoustic Instability of Methane/Air Flames in Gas Turbine Combustor

  • Sohn, Chae-Hoon;Cho, Han-Chang
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1811-1820
    • /
    • 2005
  • Thermo-acoustic instability of methane/ air flames in an industrial gas-turbine combustor is numerically investigated adopting CFD analysis. The combustor has 37 EV burners through which methane and air are mixed and then injected into the chamber. First, steady fuel! air mixing and flow characteristics established by the burner are investigated by numerical analysis with single burner. And then, based on information on the flow data, the burners are modeled numerically via equivalent swirlers, which facilitates the numerical analysis with the whole combustion system including the chamber and numerous burners. Finally, reactive flow fields within the chamber are investigated numerically by unsteady analysis and thereby, spontaneous instability is simulated. Based on the numerical results, scaling analysis is conducted to find out the instability mechanism in the combustor and the passive control method to suppress the instability is proposed and verified numerically.

Performance test of a micro-turbine jet engine (초소형 가스터빈 엔진 성능시험)

  • Shin, Young-Gy;Kim, Jong-Moon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.788-793
    • /
    • 2001
  • Test experience with a micro-turbine jet engine is introduced. The engine provides us with valuable opportunities to experience know-hows essential for engine development. It consists of a single radial compressor and a single stage turbine. Engine starting procedure has been established after many trials and errors. Static and dynamic engine performance tests were conducted. Static performance was found to be inferior to that advertised by the manufacturer. Further improvement is needed. Dynamic performance revealed that engine thrust overshoots unfavorably for the purpose of UAV control.

  • PDF

Analysis of the Dynamic Characteristics of a Small Regenerative Gas Turbine (소형 재생 가스터빈의 동적 작동특성 해석)

  • Kim, Jae Hwan;Jeon, Yong Joon;Kim, Tong Seop;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.769-777
    • /
    • 1999
  • This paper presents models for the dynamic simulation of a regenerative gas turbine and describes dynamic behaviors of a small regenerative engine. A quasi-steady model is introduced where the inertia of the working fluid is assumed to be negligible compared with the mechanical inertia of the rotating shaft. Based on this quasi-steady model, the transient model for the heat exchanger is employed to simulate the unsteady heat exchange in the recuperator. The effect of the thermal inertia of the recuperator metal on transient behaviors is analyzed by comparing the predicted results of the transient and steady state heat exchanger models. For several load change modes such as sudden increase, decrease and periodic variation, engine dynamic characteristics are investigated by applying a fuel control logic for the constant shaft speed. It is found that the thermal inertia of the recuperator metal has a dominant effect on the whole engine dynamic behavior.

Modeling and Simulation of a Gas Turbine Engine for Control of Mechanical Propulsion Systems (기계식 추진 시스템 제어를 위한 가스터빈 엔진 모델링 및 시뮬레이션)

  • Back, Kyeongmi;Huh, Hwanil;Ki, Jayoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, performance modeling and simulation of a gas turbine engine, a constituent module, was performed for the integrated control of the CODOG structure, mechanical propulsion systems. The engine model used MATLAB/Simulink to facilitate integration with the host controller and other components, and was configured to enable input/output settings suitable for the system configuration and purpose. In general, engine manufacturers do not provide performance data for the engine and components. Therefore, as a modeling method for a gas turbine, a CMF method that obtains performance data by scaling the map of components was applied. Using the generated model and simulation program, steady-state and dynamic simulation analysis tests were performed, and reliability within 5% of the maximum error was secured for the final output of power.

Modeling and verification of generator/control system of Seo-Inchon combined-cycle plant by load rejection test (부하차단시험에 의한 서인천복합화력 발전기.제어계의 모델링 및 검증)

  • 최경선;문영환;김동준;추진부;류승헌;권태원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.501-510
    • /
    • 1996
  • The gas-turbine generator of Seo-Incheon combined-cycle plant was tested for derivation of a model for dynamic analysis. Load rejection and AVR step test was performed to get the dynamic response of generator. The parameters of generator/control system model were determined by these measured data. No-load saturation test was performed for the saturation characteristics of the generator under steady state. V-curve test was also performed so as to find exact generator parameters. Q-axis parameters of generator was derived by measuring power angle. AVR and governor constants have been tuned by their oscillatory period and setting time characteristics. The derived parameters of generator control system is verified by one-machine infinite bus system simulation. (author). 7 refs., 20 figs., 5 tabs.

  • PDF

A Study on the Reliability Improvement of the Turbine Control Valve System in Nuclear and Thermal Power Plants (원자력/화력발전소의 터빈제어밸브시스템의 신뢰성 향상에 관한 연구)

  • Yang, Jong Dae;Yang, Seok Jo;Lee, Yong Bum
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.93-100
    • /
    • 2019
  • Nuclear and thermal power plants must provide the turbines with an appropriate degree of high temperature and high pressure steam, to produce the optimum electricity. Additionally, in the event of system and power system failure during electrical production, the steam is immediately disabled, to protect the turbines and generators rotating at high speed. The plant thus uses a special steam control valve system for turbine control, which is opened by force of the hydraulic servo actuator and closed by a large steel spring force. In this study, the causes of failure of the turbine control valve system, a key device of the power plants, were analyzed, and the causes of failure were improved relative to reliability of the equipment.

An Experimental Study on the Self-excited Instabilities in Model Gas Turbine Combustor (모델 가스터빈 연소기내의 자발 불안정성에 관한 실험적 연구)

  • Lee, Min-Chul;Hong, Jung-Goo;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.197-205
    • /
    • 2004
  • Most of gas turbines is operated by the type of dry premixed combustion to reduce NOx emission and economize fuel consumption. However this type operation, combustion induced instability brought failure problems cause by high pressure and heat release fluctuations. Though there has been lots of studies since Lord Rayleigh to understand this instability mechanism and control the instabilities, none of them made matters clear. In order to understand the instability phenomena, a simple experimental study with dump combustor was conducted at the moderate pressure and ambient temperature conditions. From this model gas turbine combustor self-excited instabilities at the resonance mode(200Hz) and bulk mode(10Hz) were occurred and observed at the three points of view; pressure, heat release and equivalence ratio which are acquired by peizo-electric transducer, HICCD camera and acetone LIF respectively. From this results we could see the instability mechanism clear with the account of time scale analysis which explained by the propagation of pressure wave to the upward of mixture stream and convectional transfer of the equivalence ratio fluctuation by this pressure fluctuation.

  • PDF

Numerical and Experimental Analysis of Micro Gas Turbine Heat Transfer Effect (초소형 가스터빈엔진 열전달 현상의 수치적 및 실험적 연구)

  • Seo, Junhyuk;Kwon, Kilsung;Choi, Ju Chan;Baek, Jehyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.153-159
    • /
    • 2015
  • In this study, a 2-W micro-gas turbine engine was designed using micro-electro-mechanical systems (MEMS) technology, and analytical and experimental investigations of its potential under actual combustion conditions were performed. An ultra-micro-gas turbine contains a turbo-charger, combustor, and generator. A compressor, turbine blade, and generator coil were manufactured using MEMS technology. The shaft was supported by a precision computer numerical control machined air bearing, and a permanent magnet was attached to the end of the shaft for generation. An analysis found that the cooling effect of the air bearing and compressor was sufficient to cover the combustor heat, which was verified in an actual experiment.

Modeling and Tuning of 2-DOF PID Controller of Gas turbine Generation Unit by ANFIS (적응형 신경망-퍼지 추론법에 의한 가스터빈 발전 시스템의 모델링 및 2자유도 PID 제어기 튜닝)

  • 김동화
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.1
    • /
    • pp.30-37
    • /
    • 2000
  • We studied on acquiring of transfer function and tuning of 2-DOF PID controller using ANFIS for the optimum control to turbine's variables variety. Since the shape of a membership function in the ANFIS based on the characteristics of plant. ANFIS based control method is effective for plant that its variable vary. On the other hand, a start-up time is very short and its variable's value for optimal start-up in gas turbine should be varied, but it is very difficult for such a controller to design. In this paper, we tune 2-DOF PID controller after apply a ANFIS to the operating data of Gun-san gas turbine and verify the characteristics. Its results is compared to the conventional PID controller and discuss. We expect this method will be used for another process because it is studied on the real operating data.

  • PDF