• Title/Summary/Keyword: Gas turbine control

Search Result 186, Processing Time 0.03 seconds

Design of a New 2-DOF PID Controller for Gun-san Gas Turbine Generation Plant

  • Kim, Dong-Hwa
    • Journal of KIEE
    • /
    • v.10 no.1
    • /
    • pp.16-22
    • /
    • 2000
  • The Main role of the gas turbine lies in the utilization of waste heat which may be found in exhaust gases from the gas turbine or at some other points of the process to produce additional electricity. Up to date, the PID controller has been used to operate under such difficult conditions, but since the gain of PID controller manually experience. In this paper parameter separation type 2-DOF PID controllers are proposed based on the gas turbine control system. Gas turbine transfer function is achieved from operation data of Gun-san gas turbine and Tuning algorithms of parameter separation type 2-DOF PID controller is ANFIS. Results represents satisfactory response.

  • PDF

Development of Small-sized Gas Turbine Engine Control System for Power Generation (발전용 소형가스터빈엔진 제어시스템 개발)

  • Hong, Seong-Jin;Kim, Seung-Min;Yook, Sim-Kyun;Nam, Sam-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.4
    • /
    • pp.52-56
    • /
    • 2011
  • Small-sized gas turbine engine could be applied to various fields such as propulsion, power generation, machine driving, etc., and Doosan has been developing 5MW class gas turbine engine for power generation since 2005. To verify its design performance and operating characteristics, a gas turbine engine test facility was constructed, and control system was also established to satisfy rapid and reliable control performance. In this paper, the hardware specification and structure of control system for gas turbine engine are introduced, and test result for starting characteristics analysis and loading is also presented.

Gas turbine Control using Neural-Network 2-DOF PID Controller

  • Kim, Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.61-66
    • /
    • 1998
  • Since a gas turbine is made use of generating electricity for peak time, it is a very important to operate a peak time load with safety. The main components of a gas turbine are the compressor, the combustion chamber and the turbine. So, there also must be modeled a component of gas turbines for the control with safety but it is not easy. In this paper we acquire a transfer function based on the operations data of Gun-san gas turbine and study to apply Neural-Network 2-DOF PID controler to control loop of gas turbine to reduce phenomena caused by integral and derivative actions through simulation. We obtained satisfactory results to disturbances of subcontrol loop such as, fuel flow, air flow, turbine extraction temperature.

  • PDF

Application a Loop Compensation type 2-DOF PID Controller tuned by Neural Network to Gas Turbine Control Loop (가스터빈 제어 루프에 대한 신경망 튜닝 루프 보상형 2-자유도 PID 제어기의 응용)

  • Kim, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.781-786
    • /
    • 1998
  • Since a gas turbine is still a significant contributor to peak time, it is very important to tune the gains of P. I. D to get a maximum power and stability within permissible limits. In the gas turbine, the main control loop must adjust the fuel flow to ensure the correct output power and frequency. but it is not easy, because the control loop is composed of many subsystems. In this paper we acquire a transfer function based on the operations data of Gun-san gas turbine and study to apply a loop compensation type 2-DOF PID controller tuning by neural-network to control loop of gas turbine to reduce phenomena caused by integral and derivative actions through simulation. We obtained satisfactory results to disturbances of subcontrol loop such as, fuel flow, air flow, turbine extraction temperature.

  • PDF

Design of Fuzzy-PI Controllers for the Gas Turbine System (가스터빈 시스템을 위한 퍼지-PI 제어기의 설계)

  • Kim, Jong-Wook;Kim, Snag-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1013-1021
    • /
    • 2000
  • This paper suggests fuzzy-PI controllers for a heavy-duty gas turbine. The fuzzy-PI controllers are designed to regulate rotor speed and exhaust temperature of the gas turbine. The controller gains are tuned by genetic algorithm(GA). This paper also proposes a new fitness function of GA using a desired output response. The suggested controller is compared with previous controllers via simulations and it is shown that the rotor speed variation of our controller is smaller than those of previous ones.

  • PDF

Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization (배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석)

  • Kim, T. S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.290-297
    • /
    • 2002
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as cumbined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency by adopting air flow modulation was analyzed and it is concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

  • PDF

Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization (배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석)

  • Kim, T.S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.28-35
    • /
    • 2003
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as combined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency of the combined cycle by adopting air flow modulation was analyzed and it was concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

Identification of Gas Turbine Control System through operating data (발전소의 운전데이터에 의한 가스터빈 시스템 인식)

  • Jeong, Chang-Ki;Woo, Joo-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.734-736
    • /
    • 1998
  • In this paper we obtain a discrete mathmatical model of a Gas turbine control system from experimental data. we find appropriate input signal and parameter estimation algorithm for identification of the gas turbine control system. Under these conditions experimental data are collected from real system and parameters are estimated by the recursive least square algorithm. The computer simulation results show that the proposed experimental procedure is appropriate for the identification of the gas turbine control system. The model validation is excuted by real data from the Gunsan Gas Turbine Power Plant.

  • PDF

Development of Engine Simulator for The Optimal Control System Implementation of Gas Turbine Engine (가스터빈엔진 최적 제어시스템 구현을 위한 엔진 시뮬레이터 개발)

  • Lim, H.S.;Cha, Y.B.;Lee, B.S.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2082-2085
    • /
    • 2002
  • This paper describes the development of a gas turbine engine simulator in detail. The simulator presented in this paper has a mathematical engine model based on a target gas turbine engine performance data and is developed for generating a gas turbine engine sensor signals between the hardwares and softwares of a gas turbine engine control system using Data Acquisition systems(DAS) and 1553B communication, a aeronautic standard communication specification. In addition, this paper proves the excellent performance of this simulator by showing the results of a gas turbine engine field test and simulation.

  • PDF

Neural Network Tuning of the 2-DOF PID Controller With a Combined 2-DOF Parameter For a Gas Turbine Generating Plant

  • Kim, Dong-Hwa
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.95-103
    • /
    • 2001
  • The purpose of Introducing a combined cycle with gas turbine in power plants is to reduce losses of energy, by effectively using exhaust gases from the gas turbine to produce additional electricity or process. The efficiency of a combined power plant with the gas turbine increases, exceeding 50%, while the efficiency of traditional steam turbine plants is approximately 35% to 40%. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the neural network tuning of the 2-DOF PID controller with a combined 2-DOF parameter (NN-Tuning 2-DOF PID controller), for optimal control of the Gun-san gas turbine generating plant in Seoul, Korea. In order to attain optimal control, transfer function and operating data from start-up, running, and stop procedures of the Gun-san gas turbine have been acquired and a designed controller has been applied to this system. The results of the NN-Tuning 2-DOF PID are compared with the PID controller and the conventional 2-DOF PID controller tuned by the Ziegler-Nichols method through experimentation. The experimental results of the NN-Tuning 2-DOF PID controller represent a more satisfactory response than those of the previously-mentioned two controllers.

  • PDF