• Title/Summary/Keyword: Gas turbine combustor

Search Result 354, Processing Time 0.032 seconds

Research and Development Trend of Gas Turbine Combustor in Korea (한국의 가스터빈엔진 연소기 연구개발 동향)

  • Choi, Seongman
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.287-289
    • /
    • 2012
  • The research and development history of the gas turbine combustor in Korea is introduced briefly. It is very important to understand the fuel spray, mixing phenomena in achieving combustion performance. In this paper, two kinds of fuel injection system such as duplex fuel injector and rotary spray system are introduced in developing gas turbine combustor in Korea. The extensive experimental research of fuel spray, ignition, performance and endurance rig test makes gas turbine combustor successfully in Korea.

  • PDF

Technology Research on Gas Turbine Combustor Utilizing Melt-Growth Composite Ceramics

  • Konoshita, Yasuhiro;Hagari, Tomoko;Matsumotoi, Kiyoshi;Ogata, Hideki;Ishida, Katsuhiko
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.854-860
    • /
    • 2004
  • "Research and Development of Melt-Growth Composite (MGC) Ultra High Efficiency Gas Turbine System Technology" program has been started in JFY2001. The main objective of the program is to establish basic component technologies to apply MGC material to an efficient gas turbine system successfully. It is known that MGC material maintains its mechanical strength at room temperature up to about 2000 K, which is ideal for the high temperature gas turbine. The purposes of the present study are to develop the cooling structure of the gas turbine combustor liner where MGC material is applied as the heat shield panel, also to develop the low NOx combustion system for a 1970 K (1700 deg.C) class gas turbine combustor. To start with, basic heat transfer characteristics were investigated by one-dimensional calculation and heat transfer experiment for the cooling structure. Axially staged configuration and fuel preparation were investigated by CFD calculation and experiments for the low NOx combustor.

  • PDF

Status of Combustor Development for Industrial Gas Turbine (산업용 가스터빈 연소기 개발 현황)

  • Ahn, Chulju;Park, Heeho;Kim, Min-Ki;Kim, Myeonghyo;Jung, Seungchai;Kim, Kitae;Shon, Youngchang
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.113-116
    • /
    • 2013
  • The Samsung Techwin has been developed the various types of combustor and fuel nozzle frontal devices for the aero engine and small scale industrial gas turbines. Currently, we have been developed the highly heat capacity and long-lived gas turbine combustor based on the short-lived combustor and fuel injector technologies. In this paper, the market trends and the information on the survey of an advanced gas turbine combustor were introduced for the development of large scale gas turbine combustor and fuel nozzle assembly.

  • PDF

A Numerical Analysis of the Flow Characteristics in a Lean Premixed Gas Turbine Combustor for Power Generation (발전용 희박예혼합 가스터빈 연소기 내부유동 특성 해석)

  • Chung, Jae-Hwa;Seo, Seok-Bin;Ahn, Dal-Hong;Kim, Jong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.847-852
    • /
    • 2000
  • Three dimensional CFD investigations are carried out to understand the complex flow field in a gas turbine combustor with multi-element fuel injectors. The gas turbine considered here is the GE7FA model which has aye fuel injectors in each combustor can and utilizes lean-premixed combustion to meet nitric oxide emission requirements. Detailed three-dimensional flow characteristics and fuel-air mixture formation process inside the fuel nozzle and gas turbine combustor including five swirl nozzle tips are analyzed using commercial FLUENT code.

  • PDF

Validation of Gas Turbine Combustor Cooling Design by Conjugate Heat Transfer Analysis (CHT 해석을 통한 가스터빈 연소기 냉각 설계 검증)

  • Shim, Youngsam;Partk, Jungsoo;Kim, Hokeun;Chon, Muhwan;Ryu, Jewook
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.271-272
    • /
    • 2015
  • Gas turbine combustors is critical part due to high temperature operating conditions and the optimization of cooling design is required to avoid combustor failure. In gas turbine combustor, effusion cooling, impingement cooling and thermal barrier coating (TBC) are commonly used to improve cooling characteristics. In conceptual design, these cooling schemes are designed by 1D heat transfer calculation. Therefore, these design should be validated ted by nemurical or experiment methods. In this study, Conjugate Heat Transfer (CHT) analysis is performed for validation of gas turbine combustor cooling design.

  • PDF

Analysis of Combustion Flow of LNG-Fueled Gas Turbine Swirl Burner (LNG 연료를 이용한 가스 터빈 연소기의 연소유동 해석)

  • Kim, Tae-Ho;Kang, Ki-Ha;Choi, Jeong-Yeol;Kim, Sung-Chul
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.3
    • /
    • pp.33-40
    • /
    • 2008
  • Two- and Three- dimensional numerical simulations are carried out to understand the combustion characteristics of LNG-fueled gas turbine combustor for power generation using imported and domestic natural gases. Reacting flow characteristics of the swirl stabilized natural gas combustor were understood from the numerical results with the flow conditions selected from the gas turbine operation data. The thermal influences of different natural gases were very small and the fuel composition and flow rate were considered to be tuned well. The flow structures of the recirculation and combustion region was understood from the comparison of the two- and three-dimensional results. The complexity of the three-dimensional swirl flows inside the gas turbine combustor with multiple swirlers was understood those resulting from the interactions of the stage and pilot burners.

  • PDF

The Performance Evaluation of a Gas Turbine Combustor (가스터빈 연소기의 성능평가)

  • Ahn, Kook-Young;Kim, Han-Seok;Ahn, Jin-Hyuk;Pae, Hyoung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1294-1299
    • /
    • 2000
  • The combustion characteristics have been investigated to develop the 50 kW-class gas turbine combustor. The combustor design program was developed and applied to design this combustor. The combustion air which has the temperature of 45, 200, $300^{\circ}C$ were supplied to combustor for elucidating the effect of inlet air temperature on CO, NOx emissions and flame temperature. The exit temperature and NO were increased and CO was decreased with increasing inlet air temperature. Also, the effect of equivalence ratio was considered to verify the combustor performance. The emissions of CO and NO with inlet air temperature can be analyzed qualitatively by measuring the temperature inside the combustor. The combustion performance with fuel schedule was evaluated to get the informations of the starting and part loading process of gas turbine. The combustion was stable above the equivalence ratio of 0.18. The pattern factor which is the important parameter of combustor performance was satisfied with the design criterion. Consequently the combustor was proved to meet the performance goal required for the target gas turbine system.

An Experimental Study of Instability Mode Analysis in a Model Gas Turbine Combustor (모형 가스터빈 연소기에서의 연소 불안정 모드 분석에 관한 실험적 연구)

  • Lee, Jang-Su;Kim, Min-Ki;Park, Sung-Soon;Lee, Jong-Guen;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.12-21
    • /
    • 2010
  • The main objective of this study was investigation of combustion instability characteristics in a lean partially premixed gas turbine dump combustor. Dynamic pressure transducers were located on combustor and inlet section to observe combustion pressure oscillation and difference at each measurement places. Also flame shape and $CH^*$ chemiluminescence were measured using a high speed ICCD camera. The combustor length was varied in order to have different acoustic characteristics from 800 to 1090 mm. The first section of this paper shows the stability map in model gas turbine combustor. And the effects of combustor length, mixture velocity in the mixing section and equivalence ratio were studied by the pressure perturbation and heat release oscillation. Also, the instability frequency and mode analysis were studied in last two sections. We observed two dominant instability frequencies in this study. Lower frequencies were obtained at lower equivalence ratio region and it was associated with a fundamental longitudinal mode of combustor length. Higher frequencies were observed in higher equivalence ratio conditions. It was related to secondary longitudinal mode of combustor and mixing section. In this instability characteristics, pressure oscillation of mixing section part was larger than pressure oscillation of combustor. As a result, combustion instability was strongly affected by acoustic characteristics of combustor and mixing section geometry.

Gas Turbine Core Technology Developments of Korea Aerospace Research Institute (한국항공우주연구원의 가스터빈 엔진 핵심기술 개발현황)

  • Kim, Chun Taek;Yang, Inyoung
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.277-278
    • /
    • 2015
  • Korea Aerospace Research Institute(KARI) has developed the gas turbine core technologies since 1989 and has built the infrastructure for the development of gas turbine. Efficiency and flow instability are the major research object in radial and axial compressors. For combustor, NOx reduction is major research object. KARI also has developed turbine cooling technology as well as turbine aerodynamic technology.

  • PDF

Combustion and NOx Emission Characteristics of the Gas Turbine Combustor Burning Medium-Btu Gas as Alternative Fuel (중발열량 가스 대체 시 가스터빈 연소기의 연소 및 NOx 배출 특성)

  • Lee, Chan;Seo, Je-Young
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.320-327
    • /
    • 2003
  • A CFD (Computational fluid Dynamics) research is conducted for the investigation of the fuel alteration of MBTU (medium-Btu) gas in IGCC gas turbine combustor. The computational analysis method of the gas turbine combustor is constructed by incorporating MBTU gas reaction and fuel NOx models into commercial CFD code. With the use of the present analysis method, comparisons are made on the flow velocity, the chemical species and the temperature distributions, and on the flame shape and behavior of gas turbine combustor firing natural gas and MBTU gases (coal gas, heavy residue oil gas). Furthermore, the NOx formation characteristics and the turbine matching condition of the combustor are analyzed. Based on the computed analysis results, the present study provides the directions for the redesign and the design modification of IGCC gas turbine combustor firing MBTU gas as alternative fuel.