• 제목/요약/키워드: Gas turbine combined

검색결과 213건 처리시간 0.024초

증기분사에 의한 가스터빈 열병합발전 시스템의 성능과 운전조건 변화 - 압축기 작동 변화를 중심으로 (Changes in Performance and Operating Condition of a Gas Turbine Combined Heat and Power System by Steam Injection - A Focus on Compressor Operation)

  • 강수영;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제14권6호
    • /
    • pp.68-75
    • /
    • 2011
  • This study simulated the effect of steam injection on the performance and operation of a gas turbine combined heat and power (CHP) system. A commercial simple cycle gas turbine was analyzed. A full off-design analysis was carried out to investigate the variations in not only engine performance but also the operating characteristics of the compressor caused by steam injection. Variation in engine performance and operation characteristics according to various operation modes were examined. First, the impact of full steam injection was investigated. Then, operations aiming to guarantee a minimum compressor surge margin, such as under-firing and partial steam injection, were investigated. The former and latter were turned out to be relatively superior to each other in terms of power and efficiency, respectively.

가스터빈 열 회수 증기 발생기의 난류연소 해석과 배기가스 예측 및 검증 (Numerical Analysis of Turbulent Combustion and Emissions in an HRSG System)

  • 장지훈;한가람;박호영;이욱륜;허강열
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권2호
    • /
    • pp.103-111
    • /
    • 2019
  • The combined cycle plant is an integration of gas turbine and steam turbine, combining the advantages of both cycles. It recovers the heat energy from gas turbine exhaust to use it to generate steam. The heat recovery steam generator plays a crucial role in combined cycle plants, providing the link between the gas turbine and the steam turbine. Simulation of the performance of the HRSG is required to study its effect on the entire cycle and system. Computational fluid dynamics has potential to become a useful to validate the performance of the HRSG. In this study a solver has been implemented in the open source code, OpenFOAM, for combustion simulation in the heat recovery steam generator. The solver is based on the steady laminar flamelet model to simulate detailed chemical reaction mechanism. Thereafter, the solver is used for simulation of HRSG system. Three cases with varying fuel injections and gas turbine exhaust gas flow rates were simulated and the results were compared with measurements at the system outlet. Predicted temperature and emissions and those from measurements showed the same trend and in quantitative agreement.

탈설계점 효과를 고려한 석탄가스화 복합발전용 가스터빈의 성능평가 (Performance Evaluation of the Gas Turbine of Integrated Gasification Combined Cycle Considering Off-design Operation Effect)

  • 이찬;김용철;이진욱;김형택
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.209-214
    • /
    • 1998
  • A thermodynamic simulation method is developed for the process design and the performance evaluation of the gas turbine in IGCC power plant. The present study adopts four clean coal gases derived from four different coal gasification and gas clean-up processes as IGCC gas turbine fuel, and considers the integration design condition of the gas turbine with ASU(Air Separation Unit). In addition, the present simulation method includes compressor performance map and expander choking models for considering the off-design effects due to coal gas firing and ASU integration. The present prediction results show that the efficiency and the net power of the IGCC gas turbines are seperior to those of the natural gas fired one but they are decreased with the air extraction from gas turbine to ASU. The operation point of the IGCC gas turbine compressor is shifted to the higher pressure ratio condition far from the design point by reducing the air extraction ratio. The exhaust gas of the IGCC gas turbine has more abundant wast heat for the heat recovery steam generator than that of the natural gas fired gas turbine.

  • PDF

석탄가스를 사용하는 복합발전 플랜트의 열성능 해석 -정상상태 성능해석 모델 개발- (Thermal Performance Analysis of Combined Power Plant Using Coal Gas - Development of the Steady-state Model -)

  • 김종진;박명호;안달홍;김남호;송규소;김종영
    • 에너지공학
    • /
    • 제5권1호
    • /
    • pp.8-18
    • /
    • 1996
  • 석탄가스화 복합발전(IGCC) 시스템의 공정 시뮬레이션의 일환으로서 석탄가스용 복합발전 플랜트의 성능해석을 하였다. Texaco 가스화기와 저온가스 정제공정에서 생성된 가스를 연료로 하는 가스터빈/증기터빈/폐열회수보일러로 구성된 복합사이클발전시스템을 구성한 후, ASPEN(Advanced System for Process Engineering) Code를 이용하여 정상상태 성능해석을 수행하였다. 가스터빈 사이클(GE MS 7001FA)은 공기분리 공정과의 연계성(Integration)이 고려되었고, 증기사이클은 가스화공정과 가스정제 공정과의 연계성(Integration)을 고려하여 구성하였다. 공정해석결과 가스터빈출력(MWe)은 천연가스를 사용하는 경우에 비하여 동일 입열량(연소기 입구기준)기준으로 약 20%의 증가를 가져왔다. 본 연구의 결과를 Bechtel Canada Inc.에서 Nova Scotia 발전소를 대상으로 1991년에 수행한 연구결과와 비교하였을때 잘 일치하였으며, 이를 통하여 본 연구에서 사용된 해석방법이 상용화 공정의 시뮬레이션에 적정하게 이용될 수 있음을 확인하였다.

  • PDF

IGCC 발전 플랜트에서 복합발전공정-공기분리장치의 연계에 관한 열역학적 성능 평가 (Thermodynamic Performance Evaluation of an Integration Design between the Combined-cycle and Air Separation Unit in an IGCC Power Plant)

  • 원온누리;김현정;박성구;나종문;최경민;김덕줄
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.49-51
    • /
    • 2012
  • In this paper, the integration issue, such as an air-side integration design between the gas turbine and air separation unit, is described and analyzed by the exergy and energy balance of the combined-cycle power block in an IGCC power plant. The results showed that the net power of the system was almost same, but that of the gas turbine was decreased as the integration degree increased. The highest exergy loss was occurred in the combustor of gas turbine, which was affected by the chemical reaction, heat conduction, mass diffusion, and viscous dissipation.

  • PDF

유한요소해석을 이용한 가스터빈 압축기 블레이드 피로균열 해석 (Investigation of the High Cycle Fatigue Crack of the Gas Turbine Compressor Blade Using Finite Element Analysis)

  • 윤완노;김준성
    • 한국정밀공학회지
    • /
    • 제27권12호
    • /
    • pp.107-112
    • /
    • 2010
  • A gas turbine consists of an upstream compressor and a downstream turbine with a combustion chamber, and also the compressor and the turbine are generally coupled using a single shaft. Large scale gas turbine compressor is designed as multi-stage axial flow and the blade is fan-type which is thick and wide. Recently radial cracking happens occasionally at the compressor blade tip of large scale gas turbine. So, FEM was performed on the compressor blade and vibration modes and dynamic stresses were analyzed. According to the analysis, 9th natural frequency mode of the blade, which is 2 strip mode, is near the vane passing frequency by the vane located at the upstream of the blade.

바이오 가스를 연료로 사용하는 증기분사 가스터빈 열병합발전 시스템의 성능분석 (Performance evaluation of a steam injected gas turbine CHP system using biogas as fuel)

  • 강도원;강수영;김동섭;허광범
    • 한국유체기계학회 논문집
    • /
    • 제13권6호
    • /
    • pp.57-62
    • /
    • 2010
  • MW-class gas turbines are suitable for distributed generation systems such as community energy systems(CES). Recently, biogas is acknowledged as an alternative energy source, and its use in gas turbines is expected to increase. Steam injection is an effective way to improve performance of gas turbines. This study intended to examine the influence of injecting steam and using biogas as the fuel on the operation and performance a gas turbine combined heat and power (CHP) system. A commercial gas turbine of 6 MW class was used for this study. The primary concern of this study is a comparative analysis of system performance in a wide biogas composition range. In addition, the effect of steam temperature and injected steam rate on gas turbine and CHP performance was investigated.

연소전 처리를 이용한 탄소포집이 가스터빈 복합화력 플랜트의 성능에 미치는 영향 (Effect of Carbon Capture Using Pre-combustion Technology on the Performance of Gas Turbine Combined Cycle)

  • 윤석영;안지호;최병선;김동섭
    • 한국수소및신에너지학회논문집
    • /
    • 제27권5호
    • /
    • pp.571-580
    • /
    • 2016
  • In this paper, performance of the gas turbine combined cycle(GTCC) using pre-combustion carbon capture technology was comparatively analysed. Steam reforming and autothermal reforming were used. In the latter, two different methods were adopted to supply oxygen for the reforming process. One is to extract air form gas turbine compressor (air blowing) and the other is to supply oxygen directly from air separation unit ($O_2$ blowing). To separate $CO_2$ from the reformed gas, the chemical absorption system using MEA solution was used. The net cycle efficiency of the system adopting $O_2$ blown autothermal reforming was higher than the other two systems. The system using air blown autothermal reforming exhibited the largest net cycle power output. In addition to the performance analysis, the influence of fuel reforming and carbon capture on the operating condition of the gas turbine and the necessity of turbine re-design were investigated.

복합발전기 조합별 증분비 곡선 재설정에 관한 연구 (A Study on the Resetting of Incremental Heat Rate Curve of Combined Cycle Unit by Combination)

  • 홍상범;최준호
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.8-12
    • /
    • 2019
  • Combined Cycle Unit(CC) generates the primary power from the Gas Turbine(GT) and supplies the remaining heat of the GT to the Steam Turbine(ST) to generate the secondary power from the ST. It plays a major role in terms of energy efficiency and Load Frequency Control(LFC). Incremental Heat Rate(IHR) curves of economic dispatch(ED) of CC is applied differently by GT/ST combination. But It is practically difficult because of performance test by all combinations. This paper suggests a reasonable method for estimating IHR curves for partial combinations(1:1~(N-1):1) using IHR curves when operating with GT alone(1:0) and with all(N:1) combinations of CC.

CO2를 작동유체로 하는 가스터빈의 성능예측 (Performance Prediction of a Gas Turbine Using CO2 as Working Fluid)

  • 양현준;강도원;이종준;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제14권2호
    • /
    • pp.41-46
    • /
    • 2011
  • This study investigated the changes in performance and operating characteristics of an F-class gas turbine according to the change of working fluid from air to carbon dioxide. The revised gas turbine is the topping cycle of the semi-closed oxy-fuel combustion combined cycle. With the same turbine inlet temperature, the $CO_2$ gas turbine is expected to produce about 85% more power. The main contributor is the greater compressor mass flow and the added oxygen flow for the combustion. Compressor pressure ratio increases about 50%. However, the gas turbine efficiency reduces about 10 %. Modulation of inlet guide vane to reduce the compressor inlet mass flow, the major purpose of which is to reduce the compressor inlet Mach number, was also performed.