• Title/Summary/Keyword: Gas to Particle Conversion Process

Search Result 15, Processing Time 0.025 seconds

The effect of H2O, NH3 and applied voltage to the particle conversion in the desulfurization system using a nano-pulse plasma (나노펄스 플라즈마를 이용한 탈황 시스템의 H2O 및 NH3, 펄스 인가전압에 따른 입자변환 분석)

  • Kim, Younghun;Shin, Dongho;Lee, Gunhee;Hong, Keejung;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Nano-pulse plasma technology has great potential as the process simplicity, high efficiency and low energy consumption for SO2 removal. The research on the gas-to-particle conversion is required to achieve higher efficiency of SO2 gas removal. Thus, we studied the effect of the relative humidity, NH3 concentration and applied voltage of the nano-pulse plasma system in the gas to particle conversion of SO2. The particles from the conversions were increased from 10 to 100 nm in diameter as relative humidity, NH3 concentration, applied voltage increases. With these results, nano-pulse plasma system can be used to more efficient removal of SO2 gas by controlling above parameters.

Application of Gas to Particle Conversion Reaction to increase the DeSOx/DeNOx Efficiency under Pulsed Corona Discharge (DeSOx/DeNOx 효율 개선을 위한 펄스 코로나 방전하에서 기체미립자 전환반응의 적용)

  • Choi, Yu-ri;Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.249-258
    • /
    • 1998
  • In this paper, we investigated the post-combustion removal of nitrogen oxide($NO_x$) and sulfur oxide($SO_x$) which is based on the gas to particle conversion process by the pulsed corona discharge. Under normal pressure, the pulsed corona discharge produces the energetic free electrons which dissociate gas molecules to form the active radicals. These radicals cause the chemical reactions that convert $SO_x$ and $NO_x$ into acid mists and these mists react with $NH_3$ to form solid particles. Those particles can be removed from the gas stream by conventional devices such as electrostatic precipitator or bag filter. The reactor geometry was coaxial with an inner wire discharge electrode and an outer ground electrode wrapped on a glass tube. The simulated flue gas with $SO_x$ and $NO_x$ was used in the experiment. The corona discharge reactor was more efficient in removing $SO_x$ and $NO_x$ by adding $NH_3$ and $H_2O$ in the gas stream. We also measured the removal efficiency of $SO_x$ and $NO_x$ in a cylinder type corona discharge reactor and obtained more than 90 % of removal efficiency in these experimental conditions. The effects of process variables such as the inlet concentrations of $SO_x$, $NH_3$ and $H_2O$, residence time, pulse frequencies and applied voltages were investigated.

  • PDF

Solid fuel combustion in a fluidized bed - Characteristics of a lab-scale combustor and experimental parameters (고체 연료의 유동층 연소 - 시험 연소로 특성 및 실험 인자 설정)

  • Choi, Jin-Hwan;Park, Young-Ho;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.236-245
    • /
    • 2000
  • A laboratory scale fluidized bed reactor was developed to treat the combustion characteristics of some fuels (wood, paper sludge, refuse derived fuel). The aims were to introduce the means of experiment and interpretation of the results and finally determine the particle characteristics on the pyrolysis and combustion process of the fuel. A single particle combustion process in the fluidized bed was closely observed. Understanding experimental facility characteristics and determining parameters were also carried out. The fuel combustion processes were observed by carbon conversion rate, recovery and mean carbon conversion time. They were estimated with the CO, $CO_2$ gas concentration monitored at the exit of the combustor. Fuel drying and pyrolysis process were governed by temperature distribution in the fuel particle. There was a significant overlap of the drying and devolatilization. However, transition process from devolatilization to char combustion seemed to be determined by mechanical solidity of the fuel particle after devolatilization process.

  • PDF

Effect of Bed Insert Geometry on CO Conversion of WGS Catalyst in a Fluidized Bed Reactor for SEWGS Process (SEWGS 공정을 위한 유동층 반응기에서 내부 삽입물의 모양이 WGS 촉매의 CO 전환율에 미치는 영향)

  • Ryu, Hojung;Kim, Hana;Lee, Dongho;Jin, Gyoungtae;Park, Youngcheol;Jo, Sungho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.535-542
    • /
    • 2013
  • To enhance the performance of SEWGS system by holding the WGS catalyst in a SEWGS reactor using bed inserts, effect of bed insert geometry on CO conversion of WGS catalyst was measured and investigated. Small scale fluidized bed reactor was used as experimental apparatus and tablet shaped WGS catalyst and sand particle were used as bed materials. The cylinder type and the spring type bed inserts were used to hold the WGS catalysts. The CO conversion of WGS catalyst with the change of steam/CO ratio was determined based on the exit gas analysis. Moreover, gas flow direction was confirmed by bed pressure drop measurement for each case. The measured CO conversion using the bed inserts showed high value comparable to previous results even though at low catalyst content. Most of input gas flowed through the bed center side when we charged tablet type catalyst into the cylinder type bed insert and this can cause low $CO_2$ capture efficiency because the possibility of contact between input gas and $CO_2$ absorbent is low in this case. However, the spring type bed insert showed good reactivity and good distribution of gas, and therefore, the spring type bed insert was selected as the best bed insert for SEWGS process.

The operation Characteristic of Pilot-scale 2-Stage Coal gasifier (Pilot 규모 2단 형상 가스화기 운전특성 실험)

  • Hong, Jin-Pyo;Chung, Jae-Hwa;Seo, Seok-Bin;Chi, Jun-Hwa;Lee, Seung-Jun;Chung, Suk-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.528-532
    • /
    • 2009
  • Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed with hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of gasification process to type and structure of gasifier. For this purpose, the performance characteristics of gasification reaction are analyzed with the operation characteristic of pilot-scale 2-stage coal gasifier. It is found that gasification reaction, floating characteristic of melted slag, particle stick of inside of the gasifier, particle stick and deposit of Syngas cooler are the causes in the different performance characteristics.

  • PDF

Burke-Schumann analysis of silica formation by hydrolysis in an external chemical vapor deposition process (외부 화학증착 공정에서의 가수분해반응으로 인한 실리카 생성에 대한 버크-슈만 해석)

  • Song, Chang-Geol;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1671-1678
    • /
    • 1996
  • In external chemical vapor deposition processes including VAD and OVD the distribution of flame-synthesized silica particles is determined by heat and mass transfer limitations to particle formation. Combustion gas flow velocities are such that the particle diffusion time scale is longer than that of gas flow convection in the zone of particle formation. The consequence of these effects is that the particles formed tend to remain along straight smooth flow stream lines. Silica particles are formed due to oxidation and hydrolysis. In the hydrolysis, the particles are formed in diffuse bands and particle formation thus requires the diffusion of SiCl$\_$4/ toward CH$\_$4//O$\_$2/ combustion zone to react with H$\_$2/O diffusing away from these same zones on the torch face. The conversion kinetics of hydrolysis is fast compared to diffusion and the rate of conversion is thus diffusion-limited. In the language of combustion, the hydrolysis occurs as a Burke-Schumann process. In selected conditions, reaction zone shape and temperature distributions predicted by the Burke-Schumann analysis are introduced and compared with experimental data available. The calculated centerline temperatures inside the reaction zone agree well with the data, but the calculated values outside the reaction zone are a little higher than the data since the analysis does not consider diffusion in the axial direction and mixing of the combustion products with ambient air. The temperatures along the radial direction agree with the data near the centerline, but gradually diverge from the data as the distance is away from the centerline. This is caused by the convection in the radial direction, which is not considered in the analysis. Spatial distribution of silica particles are affected by convection and diffusion, resulting in a Gaussian form in the radial direction.

A Study on the Formation Mechanism of the Fly Ash from Coal Particles in the Coal Burning Boiler (석탄연소 보일러에서 생성된 석탄회의 분석과 형성 메커니즘 해석에 대한 연구)

  • Lee, Jung Eun;Lee, Jae Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1691-1701
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A study on the formation mechanism of the fly ash from coal particles in the pulverized coal power plant is investigated with a physical, morphological, and chemical characteristic analysis of fly ash collected from the Samchonpo power plant. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, fouling phenomena and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution. Morphological characteristic of fly ash is performed using a scanning electron micrograph. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry(ICP). The distribution of fly ash size was bi-modal and ranged from 12 to $19{\mu}m$ in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, particle size and chemical components. The evolution of ash formation during pulverized coal combustion has revealed three major mechanisms by large particle formation due to break-up process, gas to particle conversion and growth by coagulation and agglomeration.

Effect of Operating Pressure on the Heat Transfer and Particle Flow Characteristics in the Syngas Quench System of an IGCC Process (IGCC 합성가스 급속 냉각시스템의 운전 압력에 따른 열유동 및 입자 거동 특성 연구)

  • Park, Sangbin;Yang, Joohyang;Oh, Junho;Ye, In-Soo;Ryu, Changkook;Park, Sung Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.97-104
    • /
    • 2014
  • In a coal gasifier for IGCC, hot syngas leaving the gasifier at about 1550oC is rapidly quenched by cold syngas recycled from the gas cleaning process. This study investigated the flow and heat transfer characteristics in the gas quench system of a commercial IGCC process plant under different operating pressures. As the operating pressure increased from 30 bar to 50 bar, the reduced gas velocity shortened the hot syngas core. The hot fly slag particles were retained within the core more effectively, and the heat transfer became more intensive around the hot gas core under higher pressures. Despite the high particle concentrations, the wall erosion by particle impaction was estimated not significant. However, large particles became more stagnant in the transfer duct due to the reduced gas velocity and drag force under higher pressures.

Effects of Bed Insert Geometry and Shape of WGS Catalysts on CO Conversion in a Fluidized Bed Reactor for SEWGS Process (SEWGS 공정을 위한 유동층 반응기에서 내부 삽입물의 모양 및 WGS 촉매의 형상이 CO 전환율에 미치는 영향)

  • Ryu, Hojung;Kim, Hana;Lee, Dongho;Bae, Dalhee;Hwang, Taeksung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.150-159
    • /
    • 2013
  • To enhance the performance of SEWGS system by holding the WGS catalyst in a SEWGS reactor using bed inserts, effects of insert geometry and shape of WGS catalysts on CO conversion were measured and investigated. Small scale fluidized bed reactor was used as experimental apparatus and WGS catalyst (particle and tablet) and sand were used as bed materials. The parallel wall type and cross type bed inserts were used to hold the WGS catalysts. The CO conversion with steam/CO ratio was determined based on the exit gas analysis. The measured CO conversion using the bed inserts showed high value comparable to physical mixing cases. Moreover, gas flow direction was confirmed by bed pressure drop measurement for each case. Most of input gas flowed through the catalyst side when we charged tablet type catalyst into the bed insert and this can cause low $CO_2$ capture efficiency because the possibility of contact between input gas and $CO_2$ absorbent is low in this case. New bed insert geometry was proposed based on the results from this study to enhance contact between input gas and WGS catalyst and $CO_2$ absorbent.

Comparison of Dry Reforming of Butane in Catalyst Process and Catalyst+Plasma Process over Ni/γ-Al2O3 Catalyst (뷰테인 건식 개질 반응을 위한 Ni/γ-Al2O3 촉매를 이용한 촉매 공정과 촉매+플라즈마 공정 비교)

  • Jo, Jin-Oh;Jwa, Eunjin;Mok, Young-Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2018
  • Conventional nickel-based catalyst processes used for dry reforming reactions have high activation temperatures and problems such as carbon deposition and metal sintering on the active sites of the catalyst surface. In this study, the characteristics of butane dry reforming reaction were investigated by using DBD plasma combined with catalytic process and compared with existing catalyst alone process. The physical and chemical properties of the catalysts were investigated using a surface area & pore size analyzer, XRD, SEM and TEM. Using $10%Ni/{\gamma}-Al_2O_3$ at $580^{\circ}C$, in the case of the catalyst+plasma process, the conversion of carbon dioxide and butane were improved by about 30% than catalyst alone process. When the catalyst+plasma process, the conversion of carbon dioxide and butane and the hydrogen production concentration are enhanced by the influence of various active species generated by the plasma. In addition, it was found that the particle size of the catalyst is decreased by the plasma in the reaction process, and the degree of dispersion of the catalyst is increased to improve the efficiency.