• Title/Summary/Keyword: Gas removal efficiency

Search Result 558, Processing Time 0.025 seconds

A Review on Size, Shape and Velocity of a Bubble Rising in Liquid (총설: 액체 중에서 상승하는 기포의 크기, 형상 및 속도)

  • Park, Sung Hoon
    • Particle and aerosol research
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Accurate prediction of size, shape and velocity of a bubble rising through a liquid pool is very important for predicting the particulate removal efficiency in pool scrubbing, for designing engineering safety features to prepare for severe accidents in nuclear power plants, and for predicting the emission of fission products from MCCI (molten core-concrete interaction) process during severe accidents. In this review article, previous studies on the determination of the size, shape and rising velocity of a bubble in liquid are reviewed. Various theoretical and parameterization formulas calculating the bubble size, shape and velocity from physical properties of liquid and gas flowrate are compared. Recent studies tend to suggest simple parameterizations that can easily determine the bubble shape and rising velocity without iteration, whereas iteration has to be performed to determine the bubble shape and velocity in old theories. The recent parameterizations show good agreement with measured data obtained from experiments conducted using different liquid materials with very diverse physical properties, proving themselves to be very useful tools for researchers in related fields.

Kinetics of Hydrogen Rich Ethanol as Reductant for HC-SCR over $Al_2O_3$ Supported Ag Catalyst (Ag/$Al_2O_3$ 촉매하의 HC-SCR에서 수소 풍부 에탄올의 반응 특성)

  • Lee, Ju-Heon;Park, Jeong-Whan;Kim, Seong-Soo;Yoo, Seung-Joon;Kim, Jin-Gul
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.6
    • /
    • pp.519-525
    • /
    • 2010
  • Ethanol was used as reductant to remove $NO_x$ over Ag/$Al_2O_3$ catalyst via SCR from stationary emission source. Among the tested hydrocarbon reductants, ethanol showed highest de-$NO_x$ performance over the Ag/$Al_2O_3$ catalyst. De-$NO_x$ efficiency of about 83% was obtained in the condition of GHSV 20,000 $hr^{-1}$, $NO_x$ 200 ppm, CO 200 ppm, $O_2$ 13%, $H_2O$ 5% and mole ratio of ethanol/$NO_x$ = 2 between temperature of $300^{\circ}C$ and $400^{\circ}C$. While $SO_2$ presence in the $NO_x$ exhaust suppressed the catalytic activity, catalyst with acid (0.7% $H_2SO_4$) treatment of catalyst showed higher catalytic activity, where In-Situ DRIFT showed S presence over catalyst surface was increased after acid treatment of catalyst. From in-situ DRIFT and SCR results, it was concluded that sulfur presence over the surface of Ag/$Al_2O_3$ catalyst was the dominant factor to control the de-$NO_x$ reaction yield via HC-SCR from the exhausted gas including $SO_2$.

A Study of Cutting Method of H-Pile for Explosive Demolition of SRC Structure (철골구조물 발파해체를 위한 H형강 절단방법에 대한 연구)

  • Min Hyung-Dong;Lee Yun-Jae;Song Young-Suk;Kim Hyo-Jin
    • Explosives and Blasting
    • /
    • v.23 no.3
    • /
    • pp.83-89
    • /
    • 2005
  • It follows in deterioration of the steel frame structure and becomes remodeling and removal. The construction work characteristic, economical efficiency and stability environment characteristic are planned and considered hereafter control plan of the steel frame structure which is deteriorated currently to cutting mettled plentifully sued on gas cutting of H beam. However it will not be able to apply from the explosives demolition which is makes a weak instantaneously and then collapses the building at the time. In this study, shape charge was used for cutting of the H-beam. That is the element testing to estimate explosives demolition for steel frame structure. As a result, it is found for single-side rutting method, both-sides rutting methods by H-beam thickness and pre-rutting process. It confirmed an affix method and an ease characteristic by fixing tool. Also, it is shown that air blasting decreased about 8dB(A) in order to reduce air blasting used by sand box. However, it will be required to reduce air blasting little more because explosives demolition will be done in urban site.

Filter- and Denuder-Based Organic Carbon Correction for Positive Sampling Artifacts

  • Hwang, InJo;Na, Kwangsam
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.107-113
    • /
    • 2017
  • This study describes (1) the impact of positive sampling artifacts caused by not only a filter-based sampling, but also a denuder-based sampling in the determination of particle-phase organic carbon (POC), (2) the effect of sample flow rate on positive artifacts, and (3) an optimum flow rate that provides a minimized negative sampling artifact for the denuder-based sampling method. To achieve the goals of this study, four different sampling media combinations were employed: (1) Quartz filter-alone (Q-alone), (2) quartz filter behind quartz-fiber filter (QBQ), (3) quartz filter and quartz filter behind Teflon filter (Q-QBT), and (4) quartz filter behind carbon-based denuder (Denuder-Q). The measurement of ambient POC was carried out in an urban area. In addition, to determine gas-phase OC (GOC) removal efficiency of the denuder, a Teflon filter and a quartz filter were deployed upstream and downstream of the denuder, respectively with varying sample flow rates: 5, 10, 20, and 30 LPM. It was found that Q-alone sampling configuration showed a higher POC than QBQ, Q-QBT, and Denuder-Q by 12%, 28%, and 23%, respectively at a sample flow rate of 20 LPM due to no correction for positive artifact caused by adsorption of GOC onto the filter. A lower quantity of GOC was collected from the backup quartz filter on QBQ than that from Q-QBT. This was because GOC was not in equilibrium with that adsorbed on the front quartz filter of QBQ during the sampling period. It is observed that the loss of particle number and mass across the denuder increases with decreasing sample flow rate. The contribution o f positive arti facts to POC decreased with increasing sample flow rate, showing 29%, 25%, and 22% for 10, 20, and 30 LPM, respectively. The 20 LPM turns out to be the optimum sample flow rate for both filter and denuder-based POC sampling.

Phenol Conversion Properties in Aqueous Solution by Pulsed Corona Discharge (펄스 코로나 방전에 의한 액체상 페놀 전환 특성)

  • Lee, Hyun-Don;Chung, Jae-Woo;Cho, Moo-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.40-46
    • /
    • 2007
  • A laboratory scale experiment on phenol conversion properties by pulsed corona discharge process was carried out. Effects of operating parameters such as applied voltage, input oxygen, and electrode geometry on phenol conversion and solution properties were investigated. Electrical discharges generated in liquid phase increased the liquid temperature by heat transfer from current flow, decreased the pH value by producing various organic acids from phenol degradation, and increased conductivity by generating charge carriers and organic acids. The oxygen supply enhanced the phenol conversion through the ozone generation dissolution and the production of OH radicals. Series type electrode configuration induced more ozone production than reference type configuration because it produced gas phase discharges as well as liquid phase discharges. Therefore, the higher phenol conversion and TOC(total organic carbon) removal efficiency were obtained in series type configuration.

Hazardous Air Pollutants Emission Characteristics from Cement Kilns Co-burning Wastes

  • Pudasainee, Deepak;Kim, Jeong-Hun;Lee, Sang-Hyeob;Cho, Sung-Jin;Song, Geum-Ju;Seo, Yong-Chil
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.212-219
    • /
    • 2009
  • Emission characteristics of air pollutants from three commercially operating cement kilns co-burning waste were investigated. The major heavy metals emitted were mercury (Hg), zinc (Zn), nickel (Ni), chromium (Cr), lead (Pb), cadmium (Cd), and arsenic (As) Removal efficiency of the bag filter was above 98.5% for heavy metals (except Hg), and above 60% for Hg. Higher fractions of heavy metals entering the bag filter were speciated to cement kiln dust. On average, 3.3% of the -heavy metals of medium and low toxicity (Pb, Ni, and Cr) entering the bag filter were released into the atmosphere. Among highly toxic heavy metals, 0.14% of Cd, 0.01% of As, and 40% of Hg entering the bag filter were released into the atmosphere. In passing through the bag filter, the proportion of oxidized Hg in all cases increased. Emission variations of hazardous air pollutants in cement kilns tested were related to raw materials, fuel, waste feed and operating conditions. Volatile organic compounds detected in gas emissions were toluene, acrylonitrile benzene, styrene, 1,3-butadiene, and methylene chloride. Although hazardous air pollutants in emissions from cement kilns co-burning waste were within the existing emission limit, efforts are required to minimize their levels.

Operation of UASB Reactor for Treatment of Dairy Wastewaters (유가공폐수 처리를 위한 UASB 반응조 운전)

  • Bae, Byung-Uk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.37-45
    • /
    • 1995
  • The performance and the operational problems of UASB(Upflow Anaerobic Sludge Blanket) reactor for treatment of dairy wastewaters were investigated. Synthetic milk wastewater was successfully treated up to the loading rate of 3.9kg $COD/m^3.day$, with a specific gas production rate of 1. 23 I/I. day and a COD removal efficiency of over 90%. However, the sludge rising was observed at the loading rate of 2.1kg $COD/m^3.day$, due probably to the formation of scum layer at the surface of settling compartment. The BMP(biochemical methane potential) of raw milk wastewater and ice cream wastewater, measured by using SBT(serum bottle test), were 0.135 and 0.66ml $CH_4/mg\;COD_{added}$, respectively. The sludge activity increased more than 8 times from 0.159g $COD-CH_4/g$ VSS. d during 90 days of operation.

  • PDF

Preparation of Paper from Pitch-based Activated Carbon Fibers and Adsorption Characteristics (피치계 활성탄소섬유를 이용한 페이퍼 제조 및 흡착특성)

  • Kim, Hyeon-Seok;Kim, Hak-Yong;Jung, Woo-Young
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.256-261
    • /
    • 2016
  • In this work, we have prepared the filter papers with the pitch-based activated carbon fibers and the binder fibers using wet-laid process. The influence of the binder fiber on the porosity of the filter papers has been investigated by using nitrogen adsorption isotherms at 77 K and a scanning electron microscope (SEM). As a result, the specific surface area has increased with an decrease in the content of binder fiber. It has been shown that the optimum ratio of pitch-based activated carbon fibers and the binder fibers is 70:30, resulting in high porosity, excellent bonding strength, large specific surface area ($650.4m^2/g$) and high noxious gas removal efficiency (86.9%). In addition, it has been observed that the mean pore size distribution of the fiber papers has not been affected by the binder fiber.

Effect of Adding WO3 on Photocatalytic Property of TiO2 Coated Coal Fly Ash (WO3 피복 석탄회의 광촉매 특성에 미치는 TiO2의 첨가 효과)

  • Yu, Yeon-tae;Kim, Byoung-gyu
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.691-696
    • /
    • 2003
  • To improve the photocatalyticactivity of $TiO_2$-coated coal fly ash, tungsten hydroxide was doped by impregnation method and was oxidized by heat treatment in temperature ranges of $WO^{\circ}C$ for 2 hrs. The changes of crystal structure and crystal size of $TiO_2$and $WO_3$on coal fly ash were investigated by X-ray diffraction analysis. The crystal structure of titanium dioxide showed only anatase type and $TiO_2$-$WO_3$ compounds appeared in the heat treatment temperature ranges of $500∼600^{\circ}C$. By adding $V_3$in $TiO_2$coated on fly ash, the growth of crystal size of anatase was restrained and the anatase phase was stabilized in temperature ranges of TEX>$500∼<800^{\circ}C$. And $WO_3$acted as a trap site of electrons excited from anatase by irradiating UV. The maximum removal efficiency of NO gas for $TiO_2$/$WO_3$-coated coal fly ash was 84% and appeared when the ammonium tungstate of $1.3${\times}$10^{-3}$ M was doped and then heated at $600^{\circ}C$ for 2 hrs.

Preparation of Platinum Amine Complex Solution from Pt Scrap and its Catalytic Activity of Soot Oxidation (백금 스크랩으로부터 아민산백금용액 제조 및 Soot Oxidation 특성)

  • Choi, Seung Hoon
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.93-99
    • /
    • 2018
  • Effective extraction of platinum group elements by dissolving waste platinum scrap from the display industry and solvent extraction, was studied. The extracted platinum solution was prepared as a precursor solution for diesel automotive exhaust gas purification catalyst and its catalytic activity was tested. The behavior of aqueous species of platinum was investigated through solution chemistry and based on the existence and behavior of these chemical species, the possibility of extraction and separation was established. By dissolving waste scrap by electrochemical method, the dissolution time of scrap was shortened and the extraction efficiency was increased. Through separation and removal of rhodium component, solvent extraction by TBP, and stripping by hydrochloric acid, Pt-Chloride-$H_2O$ solution was prepared. And then, an platinum amine complex solution through amination reaction with this solution as a raw material was prepared. The possibility of producing high-value platinum compounds from platinum group waste scrap was investigated by preparing platinum amine complex solution and then examining the catalytic activity with this amine precursor on the combustion reaction of carbon black.