• Title/Summary/Keyword: Gas nozzle

Search Result 798, Processing Time 0.024 seconds

A Study on Two-interconnected Fluidized Beds System for Selective Solid Circulation (선택적 고체순환을 위한 2탑 유동층 시스템 연구)

  • Ryu, Ho-Jung;Jang, Myoung-Su;Kim, Hong-Ki;Lee, Dong-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.337-343
    • /
    • 2009
  • To apply to novel two-interconnected fluidized beds system for selective solid circulation, a solid separator and a solid circulation system were developed. The solid separation rate increased as the gas velocity through the solid injection nozzle, solid height, and diameter of solid injection nozzle increased. However, the effect of the fluidization velocity was negligible. Coarse($212{\sim}300{\mu}m$) and fine($63{\sim}106{\mu}m$) particles were separated using the solid separator and the solid separation rate was ranged from 66 to 453 g/min. The solid circulation rate increased as the gas velocity through the solid injection nozzle, solid height, and the number of solid intake holes increased. However, the effect of the fluidization velocity was negligible. Fine particle was circulated using the solid circulation system and the solid circulation rate was ranged from 65 to 390 g/min. We also proposed two interconnenced fluidized beds system for selective solid circulation equipped with the developed solid separator and the solid circulation system. Long-term operation of continuous solid circulation up to 20 hours has been performed to check feasibility of stable operation. The pressure drop profiles in two beds and the solid separation rate were maintained steadily, and therefore, we could conclude that solid circulation was smooth and stable.

Performance Analysis of an Inert Gas Generator for Fire Extinguishing

  • Kim, Su-Yong;Arkadiy F. Slitenko
    • 연구논문집
    • /
    • s.29
    • /
    • pp.5-15
    • /
    • 1999
  • Present study deals with performance analysis of an inert gas generator (IGG) which is to be used as an effective mean to suppress the fire. The IGG uses a turbo jet cycle gas turbine engine to generate inert gas for fire extinguishing. It is generally known that a lesser degree of oxygen content in the product of combustion will increase the effectiveness of fire suppressing. An inert gas generator system with water injection will bring advantages of suffocating and cooling effects which are considered as vital factors for fire extinguishing. As the inert gas is injected to the burning site, it lowers the oxygen content of the air surrounding the flame as well as reduces the temperature around the fire as the vapour in the inert gas evaporates during the time of spreading. Some important aspects of influencing parameters, such as, air excess coefficient. $\alpha$, compressor pressure ratio, $ pi_c$, air temperature before combustion chamber, $T_2$, gas temperature after combustion chamber, $T_3$, mass flow rate of water injection, $M_w$, etc., on the performance of IGG system are investigated. Calculations of total amount of water needed to reduce the turbine exit temperature to pre-set nozzle exit temperature employing a heat exchanger were made to compare the economics of the system. A heat exchanger with two step cooling by water and steam is considered to be better than water cooling only. Computer programs were developed to perform the cycle analysis of the IGG system and heat exchanger considered in the present study.

  • PDF

Cumulative Distributions and Flow Structure of Two-Passage Shear Coaxial Injector with Various Gas Injection Ratio (2중 유로형 전단 동축 분사기의 기체 분사율에 따른 유동 및 입도분포)

  • Lee, Inchul;Kim, Dohun;Koo, Jaye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.675-682
    • /
    • 2013
  • To verify the effect of inner- and outer-stage gas jets, a shear coaxial injector was designed to analyze the axial velocity profile and breakup phenomenon with an increase in the measurement distance. When the measurement position was increased to Z/d=100, the axial flow showed a fully developed shape due to the momentum transfer, aerodynamic drag effect, and viscous mixing. An inner gas injection, which induces a higher momentum flux ratio near the nozzle, produces the greater shear force on atomization than an outer gas injection. Inner- and Outer-stage gas injection do not affect the mixing between the inner and outer gas flow below Z/d=5. The experiment results showed that the main effect of liquid jet breakup was governed by the gas jet of an inner stage. As the nozzle exit of the outer-stage was located far from the liquid column, shear force and turbulence breaking up of the liquid jets do not fully affect the liquid column. In the case of an inner-stage gas injection momentum flux ratio within 0.84, with the increase in the outer gas momentum flux ratio, the SMD decreases. However, at an inner-stage gas jet momentum flux ratio over 1.38, the SMD shows the similar distribution.

Computational Investigation of Turbulent Swirling Flows in Gas Turbine Combustors

  • Benim, A.C.;Escudier, M.P.;Stopford, P.J.;Buchanan, E.;Syed, K.J.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • In the first part of the paper, Computational Fluid Dynamics analysis of the combusting flow within a high-swirl lean premixed gas turbine combustor and over the $1^{st}$ row nozzle guide vanes is presented. In this analysis, the focus of the investigation is the fluid dynamics at the combustor/turbine interface and its impact on the turbine. The predictions show the existence of a highly-rotating vortex core in the combustor, which is in strong interaction with the turbine nozzle guide vanes. This has been observed to be in agreement with the temperature indicated by thermal paint observations. The results suggest that swirling flow vortex core transition phenomena play a very important role in gas turbine combustors with modern lean-premixed dry low emissions technology. As the predictability of vortex core transition phenomena has not yet been investigated sufficiently, a fundamental validation study has been initiated, with the aim of validating the predictive capability of currently-available modelling procedures for turbulent swirling flows near the sub/supercritical vortex core transition. In the second part of the paper, results are presented which analyse such transitional turbulent swirling flows in two different laboratory water test rigs. It has been observed that turbulent swirling flows of interest are dominated by low-frequency transient motion of coherent structures, which cannot be adequately simulated within the framework of steady-state RANS turbulence modelling approaches. It has been found that useful results can be obtained only by modelling strategies which resolve the three-dimensional, transient motion of coherent structures, and do not assume a scalar turbulent viscosity at all scales. These models include RSM based URANS procedures as well as LES and DES approaches.

Internal Flow Characteristics of Simulated Dual Pulse Rocket Motor by Using the Hot Gas and Cold Gas (Hot Gas와 Cold Gas를 이용한 모사 이중펄스 로켓 추진기관의 내부 유동 특성)

  • Cho, Kihong;Park, Jungho;Kim, Euiyong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 2015
  • Dual pulse rocket motor is a variant of solid rocket motor with two propellant grain separated by a pulse separation device. The major performance of such a rocket motor is influenced by the change in the hole area of pulse separation device to nozzle throat area ratio. In this study, we performed flow analysis to investigate the internal flow characteristics according to the pulse separation device hole area to nozzle throat area ratio change. Gases used flow analysis were used combustion gas of HTPB/AP composite propellant and nitrogen gas. Flow analysis results of the dual pulse rocket motor were validated by comparison with experimental results of pneumatics. Commercial CFD code ANSYS FLUENT 14.5 is used in this study to simulate flow analysis.

Combustion Characteristics of a Double-cone Partial Premixed Nozzle with Various Fuel hole Patterns (이중 콘형 부분 예혼합 GT 노즐의 연료 분사구 형상 변화에 대한 연소특성)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.25-31
    • /
    • 2020
  • Experimental investigations were conducted to examine the combustion characteristics of a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. Several variants with different fuel injection patterns are tested to compare the combustion characteristics such as NOx and CO emissions, stability, and wall temperature distributions. Main results show that NOx emissions and stability are decreased either when the fuel hole diameter is decreased with the same number of fuel holes, or when the number of fuel holes is reduced with the same total area of fuel holes, both of which are due to a higher penetration of fuel into the air stream. Not only is NOx reduced but also stability is enhanced when the fuel hole diameter varies in an alternating manner with the same total area of fuel holes, showing that NOx reduction is due to a higher penetration of mean fuel injection path while stability enhancement is due to a lowered penetration of minimum fuel injection path.

SOx and NOx removal performance by a wet-pulse discharge complex system (습식-펄스방전 복합시스템의 황산화물 및 질소산화물 제거성능 특성)

  • Park, Hyunjin;Lee, Whanyoung;Park, Munlye;Noh, Hakjae;You, Junggu;Han, Bangwoo;Hong, Keejung
    • Particle and aerosol research
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • Current desulfurization and denitrification technologies have reached a considerable level in terms of reduction efficiency. However, when compared with the simultaneous reduction technology, the individual reduction technologies have issues such as economic disadvantages due to the difficulty to scale-up apparatus, secondary pollution from wastewater/waste during the treatment process, requirement of large facilities for post-treatment, and increased installation costs. Therefore, it is necessary to enable practical application of simultaneous SOx and NOx treatment technologies to remove two or more contaminants in one process. The present study analyzes a technology capable of maintaining simultaneous treatment of SOx and NOx even at low temperatures due to the electrochemically generated strong oxidation of the wet-pulse complex system. This system also reduces unreacted residual gas and secondary products through the wet scrubbing process. It addresses common problems of the existing fuel gas treatment methods such as SDR, SCR, and activated carbon adsorption (i.e., low treatment efficiency, expensive maintenance cost, large installation area, and energy loss). Experiments were performed with varying variables such as pulse voltage, reaction temperature, chemicals and additives ratios, liquid/gas ratio, structure of the aeration cleaning nozzle, and gas inlet concentration. The performance of individual and complex processes using the wet-pulse discharge reaction were analyzed and compared.

An experimental study on the burning velocity measurement of natural gas (천연가스의 연소속도 측정에 관한 실험적 연구)

  • Yu, Hyeon-Seok;Han, Jeong-Ok;Bang, Hyo-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.195-201
    • /
    • 1997
  • Static and non-static flame methods were used to measure the laminar burning velocity of methane, ethane and natural gas. The flame slot angle and velocity of unburned gas mixture were determined by Schlieren method and LDV, respectively, for static flame. The diameter of nozzle was selected as 11 mm. The experimental results containing the stretch effect showed that the maximum burning velocities were 41.5 for natural gas, 40.8 for methane and 43.4 cm/sec for ethane on equivalence ratio of 1.1. Constant volume combustion chamber was also used for non-static flame. The propagation process of flame front was visualized by high speed camera during constant pressure. The maximum burning velocity of natural gas was determined as 42.1 cm/sec on equivalence ratio of 1.15.

Decarbonization Kinetics of Molten Iron by Ar+O2 Gas Bubbling (Ar+O2 혼합가스 취입에 의한 용철의 탈탄 반응속도)

  • Sohn, Ho-Sang;Jung, Kwang-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.107-113
    • /
    • 2009
  • Molten iron with 2 mass % carbon content was decarbonized at 1823 K~1923 K by bubbling $Ar+O_2$ gas through a submerged nozzle. The reaction rate was significantly influenced by the oxygen partial pressure and the gas flow rate. Little evolution of CO gas was observed in the initial 5 seconds of the oxidation; however, this was followed by a period of high evolution rate of CO gas. The partial pressure of CO gas decreased with further progress of the decarbonization. The overall reaction is decomposed to two elementary reactions: the decarbonization and the dissolution rate of oxygen. The assumptions were made that these reactions are at equilibrium and that the reaction rates are controlled by mass transfer rates within and around the gas bubble. The time variations of carbon and oxygen contents in the melt and the CO partial pressure in the off-gas under various bubbling conditions were well explained by the mathematical model. Based on the present model, it was explained that the decarbonization rate of molten iron was controlled by gas-phase mass transfer at the first stage of reaction, but the rate controlling step was transferred to liquid-phase mass transfer from one third of reaction time.

The Combustion Characteristics of a New Cyclone Jet Hybrid Combustor for Low Pollutant Emission and High Flame Stability (저공해와 고안정성을 위한 신개념의 사이클론 제트 하이브리드 연소기의 연소특성)

  • Jung, Won-Suk;Hwang, Chul-Hong;Lee, Gyou-Young;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.146-153
    • /
    • 2004
  • A Promising new approach to achieve low pollutant emissions and improvement of flame stability is tested experimentally using a cyclone jet hybrid combustor employing both premixed and diffusion combustion mode. Three kinds of nozzle are tested for mixing enhancement of fuel and air. The LNG (Liquified Natural Gas) is used as a fuel. The combustor is operated by two methods. One is DC (Diffusion Combustion) mode generated swirl flow by air as general swirl combustor, and the other is HC (Hybrid Combustion) mode. The HC mode consists of diffusion jet flame of axial direction and premixed cyclone flame of tangential direction in order to stabilized the diffusion jet flame. The results showed that the flame stability of HC mode is significantly enhanced than that of DC mode through the change of mixing characteristics by modifications of fuel nozzle. In addition, the reductions of CO and NOx emission in HC mode, as compared with that for the DC mode, is large than about 50% in stable region. Also, even using the low calorific fuel as $CO_2$-blended gas, it is identified that the cyclone jet hybrid combustor has the high performance of flame stability.