• Title/Summary/Keyword: Gas loop

Search Result 232, Processing Time 0.025 seconds

Repetitive operation characteristics of 500 Hz class excimer laser (500 Hz급 엑시머레이저의 반복동작특성)

  • 박홍진;이주희
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.232-237
    • /
    • 1996
  • A 500 Hz repetition rate excimer laser was developed as light source for pollution lidar. In this paper, the high repetitive output characteristics, the gas flow loop structure, and CR(clearing ratio) characteristics were investigated. Our laser system was constructed compact structure with a streamline gas flow loop and UV preionization. The real gas volume of laser is 10 liter. At 500 Hz repetitive operation, we have obtained average power of 53 watt with KrF laser gas. The variation of laser output, CR, and active volume are $\pm$6.7%, 2.3, and 2.0(H)$\times$1.2(W)$\times$56(L)=134 ㎤, respectively. Laser output power is declined to half at 3$\times$$10^6$ shots.

  • PDF

Optimization Study on the Open-Loop Rankine Cycle for Cold Heat Power Generation Using Liquefied Natural Gas (액화천연가스를 활용한 개방형 랭킨 사이클에 적용한 냉열 발전의 최적화에 대한 연구)

  • KIM, YOUNGWOO;LEE, JOONGSUNG;LEE, JONGJIP;KIM, DONG SUN;CHO, JUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.3
    • /
    • pp.295-299
    • /
    • 2017
  • In this study, computer simulation and optimization works have been performed for an open-loop Rankine cycle to generate power using five cases of liquefied natural gas compositions. PRO/II with PROVISION V9.4 from Schneider electric company was used, and the Soave-Redlich-Kwong equation of the state model was utilized for the design of the power generation cycle. It was concluded that more power was obtained from less molecular weight liquefied natural gas since there was more volumetric flow rate with less molecular weight.

High-Temperature Structural-Analysis Model of Process Heat Exchanger for Helium Gas Loop (I) (헬륨가스루프 시험용 공정열교환기에 대한 고온구조해석 모델링 (I))

  • Song, Kee-Nam;Lee, Heong-Yeon;Kim, Yong-Wan;Hong, Seong-Duk;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1241-1248
    • /
    • 2010
  • In large-scale production of hydrogen, a PHE (Process Heat Exchanger) is a key component because the heat required to carry out the Sulfur-Iodine chemical reaction that yields hydrogen is transferred from a VHTR (Very High Temperature Reactor) by the PHE. Korea Atomic Energy Research Institute established a helium gas loop for conducting performance test of components that are used in the VHTR. In this study, as a part of high-temperature structural-integrity evaluation of a designed PHE prototype that is scheduled to be tested in the helium gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal-expansion analysis for the designed PHE prototype. An appropriate constraint condition is proposed at the end of the in-flow and out-flow pipelines of the primary and secondary coolants and the proposed constraint condition will be applied to the design of the performance-test loop setup for the designed PHE prototype.

Simple and Flexible Temperature Control System for Space Environment Test

  • Lee, Sang-Hoon;Cho, Hyok-Jin;Seo, Hee-Jun;Moon, Guee-Won;Choi, Seok-Weon
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.29.1-29.1
    • /
    • 2008
  • The temperature control system which is using liquid and gaseous nitrogen has been known as the most economical system to simulate space temperature condition due to relatively not expansive price of the liquid nitrogen (less than 0.2 USD per liter). And, among these systems, the closed loop system which circulates compressed nitrogen gas come from sprayed liquid nitrogen by blower and makes a target temperature with heat from an electrical heater and flow rate of liquid nitrogen is prevail all over the world. But, this complete closed loop system requires expansive equipments such as blower, heater, and liquid nitrogen injector, and special maintenance on the system. Therefore, KARI is developing efficient and simple open loop system which utilizes liquid and gaseous nitrogen with eliminating a special blower and other expansive units. In this study, this open loop system with more efficiency and flexibility will be designed and introduced.

  • PDF

Controller Tuning of a Gas Turbine Generator to Improve Speed Regulation (가스터빈 발전기 속도조정율 향상을 위한 제어기 튜닝)

  • Shin, Y.O.;Kim, J.A.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.725-727
    • /
    • 1998
  • It is difficult to determine the controller parameters that we can get optimum response of the controlled process variable. In this paper we investigate the effects of various elements of which a gas turbine MW control loop is consists. And we describe the result of actual adjustment on the parameters of these elements to improve the speed regulation of a gas turbine.

  • PDF

Evaluation of 3D printability of cementitious materials according to thixotropy behavior

  • Lee, Keon-Woo;Choi, Myoung Sung
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.141-149
    • /
    • 2021
  • This study is a basic research for evaluating the buildability of cementitious materials for three-dimensional (3D) printing. In the cement paste step, the thixotropy behavior according to the resting time, which represents the time interval between each layer, was analyzed. In addition, the relationship between the thixotropy behavior and 3D concrete printing buildability was derived by proposing a measurement method that simulates the 3D concrete printing buildup process. The analysis of the tendency of the thixotropy behavior according to the resting time revealed that the area of the hysteresis loop (AHyst) showed a tendency to increase and then converge as the resting time increased, which means hysteresis loop approach critical resting time for sufficient buildability. In the thixotropy behavior analysis that simulates the 3D concrete printing buildup process, the buildup ratio, which is the recovery rate of the shear stress, showed a tendency to increase and then converge as the resting time increased, which are similar results like hysteresis loop. It was concluded that AHyst and the buildup ratio can be used as parameters for determining the resting time, and they have close relationships with 3D concrete printing buildability.

A Study on The Safety Management of City Gas Pipelines Attached on the Bridges (교량에 설치된 도시가스배관의 안전관리에 관한 연구)

  • Yun, Young-Man;Son, Sang-Geun;Choi, Do-Kyun;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.45-52
    • /
    • 2018
  • In this study, 398 city gas pipe systems installed on the bridges were surveyed and analyzed classified characteristics about the ages, length, and remote isolation devices installed or not. As a result of analysis, 43.0% pipes have been used more than 20 years and 89.4% do not have remote cut-off devices, so this study suggest safety management ways for the issues. Chosen 76 pipes were researched stress strain characteristics by CAESAR-II which is a specialized program for stress analysis. And, when a loop is installed on the bridge pipe, effect on code stress by the location and size of the loop was performed. This study can help to improve safety level by revising criteria of new installation, inspection and diagnostic.

High-Temperature Structural Analysis on the Small-Scale PHE Prototype under the Test Condition of Small-Scale Gas Loop (소형가스루프 시험조건에서 소형 공정열교환기 시제품의 고온구조해석)

  • Song, Kee-nam;Hong, S-D;Park, H-Y
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X is being tested in a small-scale gas loop at Korea Atomic Energy Research Institute. In order to properly evaluate the high-temperature structural integrity of the small-scale PHE prototype, it is very important to impose a proper constraint condition on its structural analysis model. For this effort, we tried to impose several constraint conditions on the structural analysis model and consequently fixed a proper and effective displacement constraints.

Elastic High-temperature Structural Analysis on the Small Scale PHE Prototype Considering the Pipeline Stiffness (배관 강성을 고려한 소형 공정열교환기 시제품에 대한 탄성 고온구조해석)

  • Song, Kee-nam;Kang, J-H;Hong, S-D;Park, H-Y
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.48-53
    • /
    • 2011
  • A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X is being tested in a small-scale gas loop at Korea Atomic Energy Research Institute. In this study, as a part of the evaluation on the high-temperature structural integrity of the small-scale PHE prototype, we carried out macroscopic high-temperature structural analysis of the small-scale PHE prototype under the gas loop test conditions considering the pipeline stiffness.

Prediction of Positions of Gas Defects Generated from Core (중자에서 발생한 가스 결함 위치 예측)

  • Matsushita, Makoto;Kosaka, Akira;Kanatani, Shigehiro
    • Journal of Korea Foundry Society
    • /
    • v.42 no.1
    • /
    • pp.61-66
    • /
    • 2022
  • Hydraulic units are important components of agricultural and construction machinery, and thus require high-quality castings. However, gas defects occurring inside the sand cores of the castings due to the resin used is a problem. This study therefore aimed to develop a casting simulation method that can clarify the gas defect positions. Gas defects are thought to be caused by gas generated after the molten metal fills up the mold cavity. The gas constant is the most effective factor for simulating this gas generated from sand cores. It is calculated by gas generating temperature and analysis of composition in the inert gas atmosphere modified according to the mold filling conditions of molten metal. It is assumed that gases generated from the inside of castings remain if the following formula is established. [Time of occurrence of gas generation] + [Time of occurrence of gas floating] > [Time of occurrence of casting surface solidification] The possibility of gas defects is evaluated by the time of occurrence of gas generation and gas floating calculated using the gas constant. The residual position of generated gases is decided by the closed loops indicating the final solidification location in the casting simulation. The above procedure enables us to suggest suitable casting designs with zero gas defects, without the need to repeat casting tests.