• 제목/요약/키워드: Gas insulation

검색결과 540건 처리시간 0.031초

Energy Performance Evaluation of A Primary School Building for Zero Energy School (제로에너지 스쿨을 위한 초등 교육시설의 에너지 성능평가)

  • Yoon, Jong-Ho;Shin, U-Cheul;Cho, Jin-Il;Park, Jae-Wan;Kim, Hyo-Jung;Lee, Chul-Sung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.121-126
    • /
    • 2009
  • This study analyzed the standard school's energy usage and patterns as the zero-energy goal of primary school building, and proposed the energy reduction process of school building using energy analysis computing simulation tool. As a analysis simulation tool, Visual DOE 4.0 is used. For analysis of actual energy usage, selected primary school that is standard in the nation's energy consumption. Standard of the school's energy consumption analysis were devided into electric and gas energy. Input parameters of the simulation program based on the literature material and field survey material. after, but it was calibrated to comparison with the standard school's energy consumption. Finally, its energy usage analyzed by component and made the priority order of energy saving. Applied energy saving technologies are envelopment insulation, high efficiency lighting, high performance HAVC system and used active equipment system of solar collector and photovoltaic generation for additional savings.

  • PDF

Thermal Property of Geopolymer Ceramics Based on Fly Ash-Blast Furnace Slag (플라이애시-고로슬래그 기반 지오폴리머 세라믹스의 열적특성)

  • Kim, Jin-Ho;Nam, In-Tak;Park, Hyun;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • 제26권10호
    • /
    • pp.521-527
    • /
    • 2016
  • Geopolymers have many advantages over Portland cement, including energy efficiency, reduced greenhouse gas emissions, high strength at early age and improved thermal resistance. Alkali activated geopolymers made from waste materials such as fly ash or blast furnace slag are particularly advantageous because of their environmental sustainability and low cost. However, their durability and functionality remain subjects for further study. Geopolymer materials can be used in various applications such as fire and heat resistant fiber composites, sealants, concretes, ceramics, etc., depending on the chemical composition of the source materials and the activators. In this study, we investigated the thermal properties and microstructure of fly ash and blast furnace slag based geopolymers in order to develop eco-friendly construction materials with excellent energy efficiency, sound insulation properties and good heat resistance. With different curing times, specimens of various compositions were investigated in terms of compressive strength, X-ray diffraction, thermal property and microstructure. In addition, we investigated changes in X-ray diffraction and microstructure for geopolymers exposed to $1,000^{\circ}C$ heat.

An Experiment Study for Flame Spread Prevention System of Snadwich Panels (샌드위치 패널의 화재확대 방지시스템 개발을 위한 실험적 연구)

  • Shin, Hyun-Joon;In, Ki-Ho;Yoo, Yong-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제27권6호
    • /
    • pp.307-312
    • /
    • 2015
  • The sandwich panel is commonly used domestically because it's less costly and easier to handle. But fires have frequently occurred in buildings employing sandwich panels, such as the fires in Eecheon cold storage and in Gwangju Pyungdong industrial zone. Sandwich panels with steel plates on their surface prevent fire water from penetrating to the fire source, which makes it difficult to extinguish a fire in a timely manner. Toxic gas generated from some insulation material leads to serious loss of life and property. This study is intended to develop an extinguishing system for sandwich panels, thereby reducing the fire risk. Fire water and volume were determined in the wake of the study on the structure of a sandwich panel extinguishing system, and improvement and testing of the fire characteristics of the sandwich panel. Based on such study and test, a fire model test was conducted. Consequently, the sandwich panel with extinguishing system was proven to have a reduced fire risk, compared to traditional or fire retardant panels.

The Design of Thermal Shield for KSTAR TOKAMAK (KSTAR TOKAMAK의 열차폐막 설계)

  • Kim, Dong-Lak;No, Yung-Mi;Her, Nam-Il;Cho, Seung-Yeon;Yuk, Jong-Seol;Ahn, Gwi-Cheon;Doh, Cheol-Jin;Kwon, Myun;Lee, Gyung-Su;Yoon, Byung-Ju
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.45-47
    • /
    • 2001
  • The function of the thermal shield(TS) is to eliminate the thermal radiation from the room temperature side to the coil temperature(4.5K) region so as to reduce the thermal load on the He refrigerator. The TS is composed of multilayer insulation(MLI) which is coated very thin aluminum on the insulating material, cryopanel which is cooled by cold gaseous He, and supports which stand the cryopanel and MLI on the room temperature part. The thermal shield for the TF coils and PF coils has been located between the coils and vacuum vessel. The thermal shielding cryopanel is cooled under 80 K by a forced flow of helium gas using cooling pipes on the cryopanel.

  • PDF

Modelling of On-Site Energy Consumption Profile in Construction Sites and a Case Study of Earth Moving

  • Yi, Kyoo-Jin
    • Journal of Construction Engineering and Project Management
    • /
    • 제3권3호
    • /
    • pp.10-16
    • /
    • 2013
  • The annual expenditure on diesel oil and heavy oil in the construction sector is the second largest among all industrial sectors. According to the greenhouse reduction scheme of Korean Government, construction sector targeted 7.1% reduction by 2020. Although this target is not higher than other industrial sectors, it is not easy to achieve the reduction target without radical advance in technology, which cannot be expected to happen soon, considering the conservative characteristics of construction industry. Most researches on environmental issues focus on the issues related to energy saving matters during material production stage or maintenance stage, such as heating and insulation, and few deal with the issues directly related to the energy use in the construction sites. This research regards the operation of equipment for the on-site construction processes as a system and attempts to model the energy use processes related to the activities in construction sites, and provides simulation results of earth excavation and hauling processes. The result of this research is expected to aid construction planners estimating the time-based patterns of energy use and assessing greenhouse gas emission and to help selecting more energy efficient alternatives at the planning stage.

Fabrication and characterization of silicon-based microsensors for detecting offensive $CH_3SH\;and\; (CH_3)_3N$ gases

  • Lee, Kyu-Chung;Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • 제6권1호
    • /
    • pp.38-42
    • /
    • 2008
  • Highly sensitive and mechanically stable gas sensors have been fabricated using the microfabrication and micromachining techniques. The sensing materials used to detect the offensive $CH_3SH$ and $(CH_3)_3N$ gases are 1 wt% Pd-doped $SnO_2$ and 6 wt% $Al_2O_3$-doped ZnO, respectively. The optimum operating temperatures of the devices are $250^{\circ}C$ and $350^{\circ}C$ for $CH_3SH$ and $(CH_3)_3N$, respectively and the corresponding heater power is, respectively, about 55mW and 85mW. Excellent thermal insulation is achieved by the use of a double-layer membrane: i.e. $0.2{\mu}m$-thick silicon nitride and $1.4{\mu}m$-thick phosphosilicate glass. The sensors are mechanically stable enough to endure the heat cycles between room temperature and $350^{\circ}C$, at least for 30 days.

Estimating for Properties of Insulating Degradation for Cellulose paper with Aging Temperature and Correlation by Statistical Treatment (셀룰로오스 절연지의 열화온도에 따른 절연특성 및 통계처리에 의한 상관관계 규명)

  • Kim, Jae-Hoon;Kim, Dae-Sik;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제59권5호
    • /
    • pp.912-917
    • /
    • 2010
  • It was known that oil-filled transformer's life depended on insulating paper which was applied to transformers for insulating of transformer. Therefore when paper was aged, its electrical, mechanical and chemical characteristics were changed. Especially if operating temperature was high, paper was quickly damaged. As cellulose paper which was mainly used for solid insulation of transformers was degraded, the cellulose polymer chains broke down into shorter lengths and gases such as CO, $CO_2$, $CH_4$, $C_2H_4$ and so on were produced from paper. Also by-product known as furan compounds were producted from paper and it were dissolved within insulating oil. In this paper accelerating aging cell was aged during 60 hours at 100, 150, 180 and $200^{\circ}C$, respectively, so evaluating the chemical characteristics of cellulose paper by thermal. An it were performed analysis such as tensile strength(TS), dissolved gas analysis(DGA) and high performance liquid chromatography(HPLC). Also for analyzing of correlation between insulating degradation characteristics, it was performed linear regression method as statistical treatment.

A Study on the Optimization of PD Pattern Recognition using Genetic Algorithm (유전알고리즘을 이용한 부분방전 패턴인식 최적화 연구)

  • Kim, Seong-Il;Lee, Sang-Hwa;Koo, Ja-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제58권1호
    • /
    • pp.126-131
    • /
    • 2009
  • This study was carried out for the reliability of PD(Partial Discharge) pattern recognition. For the pattern recognition, the database for PD was established by use of self-designed insulation defects which occur and were mostly critical in GIS(Gas Insulated Switchgear). The acquired database was analyzed to distinguish patterns by means of PRPD(Phase Resolved Partial Discharge) method and stored to the form with to unite the average amplitude of PD pulse and the number of PD pulse as the input data of neural network. In order to prove the performance of genetic algorithm combined with neural network, the neural networks with trial-and-error method and the neural network with genetic algorithm were trained by same training data and compared to the results of their pattern recognition rate. As a result, the recognition success rate of defects was 93.2% and the neural network train process by use of trial-and-error method was very time consuming. The recognition success rate of defects, on the other hand, was 100% by applying the genetic algorithm at neural network and it took a relatively short time to find the best solution of parameters for optimization. Especially, it could be possible that the scrupulous parameters were obtained by genetic algorithm.

A study on Insulation Characteristics on Contact Force of Main Contact of Gas Insulated Switchgear (초고압 차단기 메인 접점의 압점력에 따른 절연 특성 연구)

  • Shin, Hansu;Kim, Myounghoo;Oh, Jinseok;Hwang, Dongik;Lim, Hyoungwoo;Cha, Gueesoo
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.431-432
    • /
    • 2015
  • 본 논문은 초고압 가스절연개폐장치의 메인 접점의 압점력에 따른 절연 특성에 대한 연구이다. 차단기 접점의 접촉이 잘 이루어지지 않는 현상이 발생하게 되면 접촉저항이 증가하여 차단기의 투입 및 개방 시에 전류에 의하여 접점에 손상이 발생한다. 그리고 차단기의 접점의 압점력이 커질수록 큰 조작력이 필요하므로 차단기의 동작에도 영향을 미치는 것은 많이 알려져 있다. 그러나 압점력과 절연 특성의 관계에 대한 연구가 미비하므로 이에 대한 연구가 필요하다. 본 연구는 초고압 가스절연개폐장치의 메인 접점의 압점력에 차이에 따른 전계를 해석하고, 고정측 접점의 쉴드 유무에 따른 절연 내력을 비교 및 분석하였다. 전계 해석 결과를 통해서 메인 접점의 압점력과 절연특성과 고정측 접점 쉴드의 영향을 비교함으로써 차단기 인터럽터 내부의 전계 분포를 확인하고, 전계 강도를 확인함으로 가스절연계폐장치의 적절한 절연내력 확보를 목적으로 한다.

  • PDF

COMPUTATIONAL STUDY OF GLASS FIBER DRAWING PROCESS IN A DRAW FURNACE OF OPTICAL FIBER MASS MANUFACTURING SYSTEM (광섬유 대량생산용 인출퍼니스 내 유리섬유 인출공정의 전산해석)

  • Kim, K.;Kwak, H.S.;Kim, D.
    • Journal of computational fluids engineering
    • /
    • 제18권4호
    • /
    • pp.69-73
    • /
    • 2013
  • Mass manufacturing of optical fiber includes the process of very thin glass fiber drawing by heating and softening the high purity silica preform and applying the draw tension on the softened tip of preform neck-down profile in a draw furnace. In this computational study, this process is numerically modeled with simplified geometry of the draw furnace which is comprised of essential parts such as concentric graphite heater, muffle tube, and insulation surrounding the heater. The iterative computational scheme is employed between one-dimensional model of neck-down profile prediction and two-dimensional axisymmetric thermo-fluid CFD computation of radiative heating and working gas convection. The computational results show the experimentally observed neck-down profile in heated section of preform, while yielding the reasonable values of draw tension and heater wattage. Also, this study analyzes and discusses the effects of heating conditions such as heater length and temperature on several important aspects of glass fiber drawing process.