• 제목/요약/키워드: Gas heat pump

검색결과 206건 처리시간 0.02초

GHP 난방 모드 운전시 실시간 부하 추정방법에 관한 연구 (A Study on Estimating Real-time Thermal Load During GHP Operation in Heating Mode)

  • 서정아;신영기;오세제;정상덕;지경철;정진희
    • 설비공학논문집
    • /
    • 제23권1호
    • /
    • pp.32-37
    • /
    • 2011
  • The present study has been conducted to propose an algorithm regarding real-time load estimation of a gas engine-driven heat pump. In the study, thermal load of an indoor unit is estimated in terms of air-side and refrigerant-side. The air-side estimation is based on a typical heat exchanger model and is found to be in good agreement with experimental data. When it comes to the refrigerant-side load, a pressure difference across a valve must be estimated. For the estimation, it is assumed to be proportional to a bigger pressure difference that is available either by measurement or by estimation. Relative good agreement between the air- and refrigerant-sides suggests that the assumption may be plausible for the load estimation. The summed flow rate of all of indoor units is in good agreement with the throughput of the compressor which are calculated from the manufacturer's software. Accordingly, estimated thermal loads are also in good agreement. The proposed algorithm may be further developed for improved control algorithm and fault diagnosis.

부산지역 학교 기숙사에서의 소형열병합발전 시스템의 경제성 분석 (Economic Investigation of Small Scale Cogeneration System in a School Dormitory of Busan Region)

  • 송재도;구본철;강율호;박종규;이재근;안영철
    • 설비공학논문집
    • /
    • 제24권9호
    • /
    • pp.657-662
    • /
    • 2012
  • The cogeneration system can operate at efficiencies greater than those achieved when heat and power are produced in separate. The optimal system can be determined by selecting the auxiliary system combined with cogeneration system. In the present study, economic investigation has been conducted with the cogeneration electric heat pump(EHP) system and the cogeneration absorption chiller(AC) system to install in a school dormitory. To analyze life cycle cost(LCC), cost items such as initial investment costs, annual energy costs and maintenance costs of each system have been considered. The initial investment cost is referred to the basis of estimated costs, and annual energy costs such as the electric power and gas consumption are based on the data in a school dormitory. LCC is evaluated with the present worth method. Considering investigated results, the initial investment cost of the cogeneration EHP system is more profitable about 24% than that of the cogeneration AC system. The energy cost of the cogeneration EHP system is more profitable about 8% than the cogeneration AC system. The LCC shows that the cogeneration EHP system is the most effective system in the school dormitory.

지열 난방시스템을 이용한 분만돈사의 난방효과 분석 (Evaluation on Heating Effects of Geothermal Heat Pump System in Farrowing House)

  • 최희철;박재홍;송준익;나재천;김민지;방한태;강환구;박성복;채현석;서옥석;유영선;김태원
    • 한국축산시설환경학회지
    • /
    • 제16권3호
    • /
    • pp.205-215
    • /
    • 2010
  • 지열히트펌프를 이용한 축사용 냉난방시스템을 개발하고 농장 적용성을 검토하기 위하여 330 $m^2$ 규모의 농장에 개발 시스템을 설치하여 돈사에서의 난방 이용효과를 분석하였으며, 그 결과는 다음과 같다. 1. 지열 난방시 부하량은 24,104 kcal이었으며 농장시험 지열이용 냉난방시스템의 제원은 히트펌프 용량은 10 USRT 였으며, 상부 덕트형 30,000 kcal 홴코일유니트를 사용하였으며 FCU의 풍량은 90 $m^3$/분 이었다. 2. 지열 난방 1주령시 외부 최고기온 $14.2^{\circ}C$, 최저 영하 $9.3^{\circ}C$일때 시험구는 평균 $21.5^{\circ}C$로서 대조구 $19.8^{\circ}C$에 비하여 높았다. 3. 지열 난방 시험돈사의 먼지 농도는 PM10 185.3, PM2.5 40, PM1.0 $23.4{\mu}g/m^3$으로 대조구 PM10 481.4, PM2.5 47, PM1.0 $28.2{\mu}g/m^3$에 비하여 낮았다.4. 지열 난방 시험돈사의 유해가스농도는 $CO_2$ 1,470, $NH_3$ 10.6, $H_2S$ 0.05 ppm으로서 대조구 $CO_2$ 2,025, $NH_3$ 23.3, $H_2S$ 0.69 ppm에 비하여 유의적으로 (p<0.05) 낮았다. 5. 지열난방시 복당 이유두수는 10.5두로 대조구 10.4두에 비하여 높았으며 이유시체 중도 6.93 kg으로 대조구 6.86 kg에 비하여 컸으며 특히 온도가 낮은 대조구에서 모돈사료 섭취량이 99.6 kg으로 시험구 88.2 kg 보다 유의적으로 (p<0.05) 많았다. 6. 지열 난방시 외부기온과 지하수 순환량에 있어서 외부기온이 낮을 경우 1일간 8.4-12.9톤으로 지하수 순환량이 많았다.

설비공학 분야의 최근 연구 동향: 2011년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2011)

  • 한화택;이대영;김서영;최종민;백용규;김수민
    • 설비공학논문집
    • /
    • 제24권6호
    • /
    • pp.521-537
    • /
    • 2012
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2011. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of fluid machinery and fluid flow, thermodynamic cycle, and new and renewable energy. Various topics were presented in the field of fluid machinery and fluid flow. Research issues mainly focused on the rankine cycle in the field of thermodynamic cycle. In the new and renewable energy area, researches were presented on geothermal energy, fuel cell, biogas, reformer, solar water heating system, and metane hydration. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, nanofluids and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer above liquid helium surface in a cryostat, methane hydrate formation, heat and mass transfer in a liquid desiccant dehumidifier, thermoelectric air-cooling system, heat transfer in multiple slot impinging jet, and heat transfer enhancement by protrusion-in-dimples. In the area of pool boiling and condensing heat transfer, researches on pool boiling of water in low-fin and turbo-B surfaces, pool boiling of R245a, convective boiling two-phase flow in trapezoidal microchannels, condensing of FC-72 on pin-finned surfaces, and natural circulation vertical evaporator were actively performed. In the area of nanofluids, thermal characteristics of heat pipes using water-based MWCNT nanofluids and the thermal conductivity and viscosity were measured. In the area of industrial heat exchangers, researches on fin-tube heat exchangers for waste gas heat recovery and Chevron type plate heat exchanger were implemented. (3) Refrigeration systems with alternative refrigerants such as $CO_2$, hydrocarbons, and mixed refrigerants were studied. Heating performance improvement of heat pump systems were tried applying supplementary components such as a refrigerant heater or a solar collector. The effects of frost growth were studied on the operation characteristic of refrigeration systems and the energy performance of various defrost methods were evaluated. The current situation of the domestic cold storage facilities was analyzed and the future demand was predicted. (4) In building mechanical system fields, a variety of studies were conducted to achieve effective consumption of heat and maximize efficiency of heat in buildings. Various researches were performed to maximize performance of mechanical devices and optimize the operation of HVAC systems. (5) In the fields of architectural environment and energy, diverse purposes of studies were conducted such as indoor environment, building energy, and renewable energy. In particular, renewable energy and building energy-related researches have mainly been studied as reflecting the global interests. In addition, various researches have been performed for reducing cooling load in a building using spot exhaust air, natural ventilation and energy efficiency systems.

설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009)

  • 한화택;이대영;김서영;최종민;백용규;권영철
    • 설비공학논문집
    • /
    • 제22권7호
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.

설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제29권6호
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

흡수식냉난방기용 다성분 리튬염 작동매체의 증기압 및 용해도 측정 (Measurement and Analysis on the Physical Properties of Multi Lithium Salts Solution in Absorption Heat-Pumps)

  • 주우성;김희택;오영삼;백영순
    • 공업화학
    • /
    • 제9권1호
    • /
    • pp.82-88
    • /
    • 1998
  • 고효율 공냉형 흡수식 냉방기를 위한 신작동매체로 기존의 $LiBr-H_2O$계에 높은 흡수성과 용해성를 지닌 $LiNO_3$과 LiCl 무기물을 각각 첨가하여 제조하였다. 본 연구를 통하여 제조된 다성분계의 작동매체에 대한 용해도와 증기압을 측정하여 $LiBr-H_2O$계와 비교 분석하였으며, 이들에 대한 최적혼합비를 각각 구하였다. 용해도 측면에서 $LiBr-LiNO_3-H_2O$계의 경우, LiBr과 $LiNO_3$의 최적혼합 몰비는 5:1이었으며, 반면 $LiBr-LiNO_3-LiCl-H_2O$계의 경우 LiBr, $LiNO_3$, LiCl의 최적혼합몰비는 5:1:2로 나타났다. 한편 증기압은 $LiBr-H_2O$계에 $LiNO_3$의 첨가량이 증가하였으나, LiCl의 경우에는 첨가량이 증가함에 따라 감소하는 경향을 각각 나타내었다.

  • PDF

플래쉬 중각냉각기와 플래쉬 가스 바이패스를 이용한 이단압축 이산화탄소 사이클의 냉방성능에 관한 해석적 연구 (Simulation Study on the Cooling Performance of the Two-Stage Compression CO2 Cycle with the a Flash Intercooler and Flash Gas Bypass)

  • 곽명석;조홍현
    • 대한기계학회논문집B
    • /
    • 제36권1호
    • /
    • pp.17-24
    • /
    • 2012
  • 본 연구에서는 효율적인 냉방시스템의 성능특성을 연구하기 위하여 2단압축을 이용한 이산화탄소 냉방사이클의 성능에 대하여 해석적 연구를 진행하였다. 2단압축을 이용한 플래쉬 중간냉각(flash intercooler)과 플래쉬 가스 바이패스(flash gas bypass) 사이클에 대한 해석적 모델을 개발하였으며 실내온도, 실외온도, 그리고 1단 및 2단 EEV 개도를 변화시켰다. 그 결과 FI와 FGB 사이클의 성능계수는 실외온도를 변화시켰을 경우 각각 28.5%, 22.1% 정도 감소하였으며, 실내온도 변화에 따른 이단압축 사이클의 성능변화는 단단압축 사이클에 비하여 적은 것으로 나타났다. 또한 저단 및 고단 EEV 개도를 변경하였을 경우 성능은 각각 13.5%, 6.9% 그리고 0.9%, 2.6% 정도 증가하는 것으로 나타나 고단 EEV 개도보다 저단의 EEV 개도의 변화가 시스템의 성능에 미치는 영향이 큰 것으로 확인되었다. FI 사이클은 다양한 운전조건에서 시스템의 성능이 가장 높게 나타나는 것을 확인할 수 있었다.

$CO_2$ 2단 트윈 로타리 압축기 성능해석 (Performance Analysis of a $CO_2$ Two-Stage Twin Rotary Compressor)

  • 김우영;안종민;김현진;조성욱
    • 설비공학논문집
    • /
    • 제19권1호
    • /
    • pp.19-27
    • /
    • 2007
  • Analytical investigation on the performance of a two stage twin rotary compressor for $CO_2$ heat pump water heater system has been carried out. A computer simulation program was made based on analytical models for gas compression in control volumes, leakages among neighboring volumes, and dynamics of moving elements of the compressor. Calculated cooling capacity, compressor input, and COP were well compared to those of experiments over the compressor speeds tested. For the operating condition of suction pressure of 3 MPa, and discharge pressure of 9 MPa, and compressor inlet temperature of $35^{\circ}C$, the compressor efficiency was calculated to be 80.2%: volumetric, adiabatic, and mechanical efficiencies were 88.3%, 93.2%, and 92.7%, respectively. For the present compressor model, volumetric and adiabatic efficiencies of the second stage cylinder were lower by about $6{\sim}7%$ than those of the first stage mainly due to the smaller discharge port at the second stage. Parametric study on the discharge port size showed that the compressor performance could be improved by 3.5% just by increasing the discharge port diameter by 20%.

경제성분석 프로그램을 이용한 도심형 마이크로그리드 최적 설계 (Optimal Design of Urban MICROGRID using Economical Analysis Program)

  • 유승덕;임성우;임유석;황성욱;이학주
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권2호
    • /
    • pp.69-72
    • /
    • 2022
  • This paper actually investigates the load on major large-scale buildings in the downtown area, examines the economic feasibility of installing PV and ESS in a microgrid target building, and evaluates whether an electric vehicle capable of V2G through two buildings is effective as an economical analysis program (HOMER) was analyzed using. It is economical to install a mixture of ESS rather than using the whole PV, and it is shown that if there is an electric vehicle using the V2G function of EV, there is an economic effect to replace the PV. So that Incentives and policies are needed to replace a large area of PV and utilize the existing parking lot to lead EV as a resource of the microgrid. Currently, P2X technology that stores power as ESS or converts it to other energy to control when surplus renewable energy occurs in large-capacity solar power plants and wind farms, etc. This is being applied, and efforts are being made to maintain the stability of the system through the management of surplus power, such as replacing thermal energy through a heat pump. Due to the increase in electric vehicles, which were recognized only as a means of transportation, technologies for using electric vehicles are developing. Accordingly, existing gas stations do not only supply traditional chemical fuels, but electricity, and super stations that also produce electricity have appeared. Super Station is a new concept power plant that can produce and store electricity using solar power, ESS, V2G, and P2G. To take advantage of this, research on an urban microgrid that forms an independent system by tying a large building and several buildings together and supplies power through a super station around the microgrid is in full swing.