• Title/Summary/Keyword: Gas fuel

Search Result 4,082, Processing Time 0.032 seconds

Calculation of fuel temperature profile for heavy water moderated natural uranium oxide fuel using two gas mixture conductance model for noble gas Helium and Xenon

  • Jha, Alok;Gupta, Anurag;Das, Rajarshi;Paraswar, Shantanu D.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2760-2770
    • /
    • 2020
  • A model for calculation of fuel temperature profile using binary gas mixture of Helium and Xenon for gap gas conductance is proposed here. In this model, the temperature profile of a fuel pencil from fuel centreline to fuel surface has been calculated by taking into account the dilution of Helium gas filled during fuel manufacturing due to accumulation of fission gas Xenon. In this model an explicit calculation of gap gas conductance of binary gas mixture of Helium and Xenon has been carried out. A computer code Fuel Characteristics Calculator (FCCAL) is developed for the model. The phenomena modelled by FCCAL takes into account heat conduction through the fuel pellet, heat transfer from pellet surface to the cladding through the gap gas and heat transfer from cladding to coolant. The binary noble gas mixture model used in FCCAL is an improvement over the parametric model of Lassmann and Pazdera. The results obtained from the code FCCAL is used for fuel temperature calculation in 3-D neutron diffusion solver for the coolant outlet temperature of the core at steady operation at full power. It is found that there is an improvement in calculation time without compromising accuracy with FCCAL.

Utilization of alternative marine fuels for gas turbine power plant onboard ships

  • El Gohary, M. Morsy;Seddiek, Ibrahim Sadek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.21-32
    • /
    • 2013
  • Marine transportation industry is undergoing a number of problems. Some of these problems are associated with conventional marine fuel-oils. Many researchers have showed that fuel-oil is considered as the main component that causes both environmental and economic problems, especially with the continuous rising of fuel cost. This paper investigates the capability of using natural gas and hydrogen as alternative fuel instead of diesel oil for marine gas turbine, the effect of the alternative fuel on gas turbine thermodynamic performance and the employed mathematical model. The results showed that since the natural gas is categorized as hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using the natural gas was found to be close to the diesel case performance. The gas turbine thermal efficiency was found to be 1% less in the case of hydrogen compared to the original case of diesel.

Anaerobic Digester Gas Purification for the Fuel Gas of the Fuel Cell (연료전지 연료가스인 하수처리장 소화가스정제)

  • Lee, Jong-Gyu;Jun, Jae-Ho;Park, Kyu-Ho;Choi, Doo-Sung;Park, Jae-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.164-170
    • /
    • 2007
  • The Tancheon wastewater treatment plant(WWTP) in Seoul using anaerobic digestion to reduce the outlet sludge produces anaerobic digester gas which contains 65% $CH_4$ and 35% $CO_2$. The gas purification equipment was installed and operated to use Anaerobic Digester Gas(ADG) as a fuel for molten carbonate fuel cell(MCFC). The processes consist of the desulfurizer and the adsorption tower to remove $H_2S$ and siloxane in the gas. The gas purification equipment removed virtually over 95% of $H_2S$ and over 99% of siloxane. Results has demonstrated that the fuel cell can produce electrical output and hot water with negligible air emissions of CO, NOx and $SO_2$. The site provides the first opportunity in Korea for demonstrating Molten carbonate fuel cell(MCFC) which the digester gas was applied to the fuel gas.

Effects of the Amount of Natural Gas in Fuel Blends on the Exhaust Gas of the Diesel Engines (혼합연료의 천연가스량이 디젤기관의 배기가스에 미치는 영향)

  • 박명호;김성준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.67-72
    • /
    • 1997
  • The purpose of this study os to investigate how the natural gas in fuel blend influences the polutant emission of diesel engine. Four stroke cycle single cylinder engine is used for this experiment and four kind of fuel blends were made. Fuel blends show four different torque ratios between diesel oil and natural gas, which are 4 : 0. 3 : 1, 2 : 2 and 1 : 3. The constituents of exhaust gases of engine are analyzed for every fuel blend. The experimental results say that the mixing of natural gas into diesel fuel is an very effective way to reduce the amount of soot in the exhaust gas.

  • PDF

A Study on the Characteristics of Dual Fuel Engine Fueled by Natural Gas and Diesel (천연가스-경유 혼소엔진의 특성연구)

  • Kim, Changup;Oh, Seungmook
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.20-26
    • /
    • 2013
  • In this study, based on a 12L class diesel engine, a natural gas-diesel dual fuel engine was developed by adding natural gas fuel supply system. For optimal control of dual fuel engine, a conventional diesel engine ECU and a dual fuel ECU were utilized. To convert the dual fuel engine, MPI natural gas injectors were installed on the new modified intake manifold adapter. As a results, the dual fuel engine showed same level of torque, power performance and exhaust gas emissions as those of a diesel base engine.. Furthermore, overall fuel replacement rate was 70~76 % and total fuel cost saving was 37~40%.

Surface Flame Patterns and Stability Characteristics of Premixed Burner System for Fuel Reformers (개질기용 예혼합 버너의 화염형태 및 안정성 특성)

  • Lee, Pil-Hyong;Park, Bong-Il;Jo, Soon-Hye;Hwang, Sang-Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.8-14
    • /
    • 2010
  • Fuel processing systems which convert fuel into rich gas (such as stream reforming, partial oxidation, autothermal reforming) need high temperature environment ($600{\sim}1,000^{\circ}$). Generally, anode-off gas or mixture of anode-off gas and LNG is used as input gas of fuel reformer. In order to make efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristic of fuel reformer burner. The purpose of this study is to develop a porous premixed flat ceramic burner that can be used for 1~5 kW fuel cell reformer. Ceramic burner experiments using natural gas, hydrogen gas, anode off gas, mixture of natural gas & anode off gas were carried out respectively to investigate the flame characteristics by heating capacity and equivalence ratio. Results show that the stable flat flames can be established for natural gas, hydrogen gas, anode off gas and mixture of natural gas & anode off gas as reformer fuel in the porous ceramic burner. For all of fuels, their burning velocities become smaller as the equivalence ratio goes to the lean mixture ratio, and a lift-off occurs at lean limit. Flame length in hydrogen and anode off gas became longer with increasing the heat capacity. In particular, the blue surface flame is found to be very stable at a very lean equivalence ratio at heat capacity and different fuels. The exhausted NOx and CO measurement shows that the blue surface flame represents the lowest NOx and CO emissions since it remains very stable at a lean equivalence ratio.

Effect of Gas Compositions on Fuel Economy and Exhaust Emissions of Natural Gas Vehicles (연료의 조성변화가 천연가스차량의 연비 및 배출가스 특성에 미치는 영향)

  • 이영재;김강출
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.123-131
    • /
    • 1999
  • Natural gas is one of the most promising alternative fuels for automotive vehicles. However, natural gas varies in compositional between the originating fields and may be further modified due to processing and additional mixing. These variations are known to affect engine performance and emissions through changes in fuel metering and combustion characteristics. In the present study, the effect of gas compositions on vehicle performance such as fuel economy, driveability and exhaust emissions was examined. Analysis are made of using 3 types of NGVs which were made by automakers and 6 different fuels which are selected in consideration of the variation in fuel composition on the worldwide market. The results may be utilized to develop natural gas natural gas engine in automaekrs and/or to establish the fuel standard in the refueling stations.

  • PDF

Biogas Purifying for Fuel cell Power Plant (연료전지 발전을 위한 바이오가스정제)

  • Lee, Jong-Gyu;Jun, Jae-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.439-444
    • /
    • 2007
  • Using the anaerobic digester gas as a fuel, fuel cells have the potential to provide significant environmental and economic benefits. A molten carbonate fuel cell power plant was installed in the municipal sewage works of Tancheon in Seoul. The fuel cell unit operates on anaerobic digester gas and provides power and heat for the sewage works. This is the first project of its kind in Korea. This article outlines the experiences of gas purification process with planning, installation and operation. The engineering and installation phase is described regarding to the special features of digester gas, for example impurities in gas composition. Such impurities would be harmful to fuel cells. Operational results from the field test with a gas purification process plant are presented in this paper.

Experimental Study on the Flame Behavior and the NOx Emission Characteristics of Low Calorific Value Gas Fuel (저 발열량 가스 연료의 화염거동 및 NOx 발생 특성에 관한 실험적 연구)

  • Kim, Yong-Chul;Lee, Chan
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.89-93
    • /
    • 1999
  • Experimental studies are conducted to investigate the flame stability and the thermal/fuel NOx formation characteristics of the low calorific value(LCV) gas fuel. Synthetic LCV fuel gas is produced through mixing carbon monoxide, hydrogen, nitrogen and ammonia on the basis that the thermal input of the syngas fuel into a burner is identical to that of natural gas, and then the syngas mixture is fed to and burnt with air on flat flame burner. Flame behaviors are observed to identify flame instability due to blow-off or flash-back when burning the LCV fuel gas at various equivalence ratio conditions. Measurements of NOx in combustion gas are made for comparing thermal and fuel NOx emissions from the LCV syngas combustion with those of the natural gas one, and for analyzing ammonia to NOx conversion mechanism. In addition, the nitrogen dilution of the LCV syngas is preliminarily attempted as a NOx reduction technique.

  • PDF

Combustion Characteristics of Premixed Burner for Fuel Reformer (개질기용 예혼합 연소장치의 연소특성 연구)

  • Lee, Pil-Hyong;Lee, Jae-Young;Han, Sang-Seok;Park, Chang-Soo;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2181-2185
    • /
    • 2008
  • Fuel processing systems which convert HC fuel into $H_2$ rich gas (such as stream reforming, partial oxidation, auto-thermal reforming) need high temperature environment($600-1000^{\circ}C$). Generally, anode-off gas or mixture of anode-off gas and LNG is used as input gas of fuel reformer. In order to make efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristic of fuel reformer burner. The purpose of this study is to develop a porous premixed flat ceramic burner that can be used for 1-5kW fuel cell reformer. Ceramic burner experiments using natural gas, hydrogen gas, anode off gas were carried out respectively to investigate the flame characteristics by heating capacity and equivalence ratio. Results show that the stable flat flames can be established for natural gas, hydrogen gas, anode off gas and mixture of natural & anode off gas as reformer fuel. For all of fuels, their burning velocities become smaller as the equivalence ratio goes to the lean mixture ratio, and a lift-off occurs at lean limit. Flame length in hydrogen and anode off gas became longer with increasing the heat capacity.

  • PDF