• 제목/요약/키워드: Gas flow

검색결과 5,567건 처리시간 0.04초

플라즈마 아크 오비탈 용접의 경사상진자세에서 이면비드 형성에 관한 연구 (A Study on Back Bead Formation in Inclined-up Position of Flasma An Orbital Welding)

  • 김효원;조상명
    • Journal of Welding and Joining
    • /
    • 제27권1호
    • /
    • pp.71-78
    • /
    • 2009
  • In the circumferential welding of pipe, welding phenomenon changes with the position of pipe. Especially in the overhead position, back bead of vertical-up position would be sunk. To investigate the size of back bead and keyhole with the change of the flow rate of pilot and shield gas at each position, bead-on plate welds were conducted on 6mm thickness SS400 with inclined-up position. When the rest of welding conditions remained constant, the width of back bead was increased as the flow rate of pilot gas was increased. And back bead tended to convex as the flow rate of shield gas was increased.

스마트무인기 엔진 배기가스가 기체에 미치는 영향에 관한 수치적 연구 (Numerical Study for the Effect of Engine Exhaust Gas on the Airframe of Smart UAV)

  • 이창호;김철완;김재무
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.464-467
    • /
    • 2008
  • An ejector is designed for the purpose of engine bay cooling. The primary flow of the ejector is the exhaust gas of the PW206C turboshaft engine. The mass flow of secondary flow is calculated by using the approximate analytic equation. And the effect of exhaust gas flow on the fuselage surface is investigated by using the Fluent Code. Three types of exhaust duct shape were compared in the viewpoint of surface temperature and aerodynamic drag. As a result, exhaust duct shape P3 shows minimum interference of exhaust gas and fuselage and minimum increment of drag among the three candidate shapes.

  • PDF

개도율에 따른 가스파이프라인용 볼 밸브 후류유동의 수치평가 (Numerical Evaluation of Flow Nature at the Downstream of a Ball Valve Used for Gas Pipelines with Valve Opening Rates)

  • 김철규;이상문;장춘만
    • 한국수소및신에너지학회논문집
    • /
    • 제29권4호
    • /
    • pp.370-377
    • /
    • 2018
  • Ball valve has been widely used in the field of high-pressure gas pipeline as an important component because of its low flow resistance and good leakage performance. The present paper focuses on the flow nature at the downstream of the ball valve used for gas pipelines according to valve opening rates. Steady 3-D RANS equations, SC/Tetra, have been introduced to analyze the flow characteristics inside the ball valve. Numerical boundary conditions at the inlet and outlet of the valve system are imposed by mass flow-rate and pressure, respectively. Velocity distributions obtained by numerical simulation are compared with respect to the valve opening rates of 30, 50, and 70%. Cavity distributions, asymmetry flow velocity and the flow stabilization point at each opening rate are also compared. When the valve opening rates are 30 and 50%, the flow stabilization requires the sufficient length of 10D or more due to the influence of the recirculation flow at the downstream of the valve.

콘형 배플판을 갖는 Gun식 가스버너의 난류유동장에 대한 슬릿과 스월베인의 역할 (The Role of Slits and Swirl Vanes on the Turbulent Flow Fields in Gun-Type Gas Burner with a Cone-Type Baffle Plate)

  • 김장권;정규조
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.466-475
    • /
    • 2003
  • The gun-type gas burner adopted in this study is generally composed of eight slits and swirl vanes. Thus, this paper is studied to investigate the effect of slits and swirl vanes on the turbulent flow fields in the horizontal plane of gas swirl burner with a cone type baffle plate measured by using X-probe from hot-wire anemometer system. This experiment is carried out at flow rate 450 $\ell$/min in the test section of subsonic wind tunnel. The axial mean velocity component in the case of burner model with only swirl vanes shows the characteristic that spreads more remarkably toward the radial direction than axial one, it does, however, directly opposite tendency in the case of burner model with only slits. Consequently. both slits and swirl vanes composing of gun-type gas burner play an important role in decrease of the speed near slits and increase of the flow speed in the central part of a burner because the biggest speed spurted from slits encircles rotational flow by swirl vanes and it drives main flow toward the axial direction. Moreover, the turbulent intensities and turbulent kinetic energy of gun-type gas burner are distributed with a fairly bigger size within X/R<0.6410 than burner models which have only slits or swirl vanes because the rotational flow by swirl vanes and the fast jet flow by slits increase flow mixing, diffusion, and mean velocity gradient effectively.

MERIE형 반응로를 이용한 AlSi의 식각 특성 (Properties of AlSi etching using the MERIE type reactor)

  • 김창일;김태형;장의구
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권2호
    • /
    • pp.188-195
    • /
    • 1996
  • The AlSi etching process using the MERIE type reactor carried out with different process parameters such as C1$_{2}$ and N$_{2}$ gas flow rate, RF power and chamber pressure. The etching characteristics were evaluated in terms of etch rate, selectivity, uniformity and etched profile. As the N2 gas flow rate is increased, the AlSi etch rate is decreased and uniformity has remained constant within .+-.5%. The etch rate is increased and uniformity is decreased, according to increment of the C1$_{2}$ gas flow rate, RF power and chamber pressure. Selective etching of TEOS with respect to AlSi is decreased as the RF power is increased while it is increased by increment of the C1$_{2}$ gas flow rate and chamber pressure, on the other hand, selective etching of photoresist with respect to AlSi is increased by increment of the C1$_{2}$ gas flow rate and chamber pressure, it is decreased as the N$_{2}$ gas flow rate is increased.

  • PDF

13" 비대칭 DPF 내 형상에 따른 배압 및 유동균일도 영향에 관한 전산해석연구 (CFD Analysis on Effect of Pressure Drop and Flow Uniformity with Geometry in 13" Asymmetric DPF)

  • 한단비;변현승;백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제31권6호
    • /
    • pp.614-621
    • /
    • 2020
  • Recently, as the fine dust is increased and the emission regulations of diesel engines are strengthened, interest in diesel soot filtration devices is rapidly increased. In particular, there is a demand for technology development for higher efficiency of diesel exhaust gas after-treatment devices. As part of this, many studies conducted to increase the exhaust gas treatment efficiency by improving the flow uniformity of the exhaust gas in the DPF and reducing the pressure drop between the inlet and outlet of disel particle filter (DPF). In this study, computational fluid dynamics (CFD) simulation was performed when exhaust gas flows into the canning reduction device equipped with a 13" asymmetric DPF in order to maintain the flow uniformity in the diesel exhaust system and reduce the pressure. In particular, a study was conducted to find the geometry with the smallest pressure drop and the highest flow uniformity by simulating the DPF I/O ratio, exhaust gas temperature, inlet-outlet pressure and flow uniformity according to the geometry and hole size of distributor.

친환경 가스개폐기 개폐성능 향상을 위한 유동해석 및 실험 (Fluid Dynamics Analysis and Experimental Trial to Improve the Switching Performance of Eco-friendly Gas Insulated Switch)

  • 유련;안길영;김영근;조해용
    • 한국기계가공학회지
    • /
    • 제21권9호
    • /
    • pp.42-49
    • /
    • 2022
  • An underground electric switch is a high-voltage switch used in distribution network systems for a reliable power supply. Many studies are being conducted to expand the switch to use an eco-friendly gas using dry air instead of SF6 gas to reduce greenhouse gas emissions. In this study, a flow analysis model was established to improve the performance of an eco-friendly gas switch. The results were compared and reviewed through experiments. For the optimal arc grid design applied to the switch, the flow characteristics based on the flow path configuration and the changes in arcing time for each configuration were compared. Flow analysis can predict the switch flow distribution, and a comparative review of the flow path configurations of various methods is possible.

중심 공기류를 이용한 환상 액막 미립화에 관한 연구-기/액 분사유속에 따른 입경 변화 고찰 (Atomization of Annular Liquid Sheet with Core Air Flow - SMD Variation with Gas/Liquid Injection Velocity)

  • 최철진;이상용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.131-135
    • /
    • 2001
  • The atomization characteristics of an annular liquid (water) sheet of small radius with a core gas (air) flow were studied. Different sizes of annular gaps (0.2, 0.4 and 0.8 mm) were tested to find the effect of liquid sheet thickness on SMD. The inner diameter of the gas port for the core gas flow was 4 mm. Cross-section averaged SMD was measured for various liquid and gas velocities. Regions of the SMD decrease with the increase of the liquid velocity always existed regardless of the liquid sheet thickness. This attributes to the transition of the flow patterns of spray and also to the aerodynamic interaction between the atomizing gas and the ripples on the liquid sheet surface.

  • PDF

복사효과를 고려한 기체-입자 직접접촉식 열교환기 해석 (Analysis of a gas-particle direct-contact heat exchanger with two-phase radiation effect)

  • 박재현;백승욱;권세진
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.542-550
    • /
    • 1998
  • A direct contact heat exchanger using particle-suspended gas as a heat transfer medium is analyzed with an extended emphasis on the radiation, i. e., considering the radiation by both gas and particles. While the Runge-Kutta method is used for a numerical analysis of the momentum and energy equations, the finite volume method is utilized to solve the radiative transfer equation. Present study shows a notable effect by the gas radiation in addition to the particle radiation, especially when changing the chamber length as well as the gas and particle mass flow rate. When the gas and particle mass flow rate is raised, the gas temperature in the particle heater still increases as the gas absorption coefficient increases, which is different from the results for the small scale heat exchanger.

공동주택 보일러 연소배기가스의 실내유입에 관한 수치적 연구 (A Numerical Study on Flow around Exhaust Ducts of Flue Gas from Apartment Heating Boiler)

  • 박외철;정락기
    • 설비공학논문집
    • /
    • 제15권7호
    • /
    • pp.557-562
    • /
    • 2003
  • Flue gas from apartment heating gas boiler is exhausted outside through an exhaust duct mounted horizontally in a vertical row on the wall. The flue gas includes nitrogen-oxides (NOx) and carbon monoxide. To investigate the possible entrainment of the flue gas into the apartments through the windows, a large eddy simulation (LES) based numerical method is utilized. Distribution of the velocity intensity and temperature around the exhaust ducts is presented for three numerical parameters: exhaust velocity, temperature of the flue gas, and exhaust duct length. The flow field visualized with particles inserted at the ends of the ducts is also presented. The results clearly show that the exhausted flue gas may flow into the apartments when the windows are open.