• Title/Summary/Keyword: Gas exchange

Search Result 648, Processing Time 0.027 seconds

Estimation of Mean Air Exchange Rate and Generation Rate of Nitrogen Dioxide Using Box Model in Residence (주택에서 Box Model을 이용한 평균 환기율 및 이산화질소 발생량 추정)

  • Bae, Hyeon Ju;Yang, Won Ho;Son, Bu Sun;Kim, Dae Won
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.645-653
    • /
    • 2004
  • Indoor air quality is affected by source strength of pollutants, ventilation rate, decay rate, outdoor level, and so on. Although technologies measuring these factors exist directly, direct measurements of all factors are not always practical in most field studies. The purpose of this study was to develop an alternative method to estimate these factors by application of multiple measurements. For the total duration of 30 days, daily indoor and outdoor $NO_2$ concentrations were measured in 30 houses in Brisbane, Australia, and for 21 days in 40 houses in Seoul, Korea, respectively. Using a box model by mass balance and linear regression analysis, penetration factor (ventilation divided by sum of air exchange rate and deposition constant) and source strength factor (emission rate divided by sum of air exchange rate and deposition constant) were calculated, Sub-sequently, the ventilation and source strength were estimated. In Brisbane, the penetration factors were $0.59\pm0.14$ and they were unaffected by the presence of a gas range. During sampling period, geometric mean of natural ventilation was estimated to be $l.l0\pm1.5l$ ACH, assuming a residential $NO_2$ decay rate of 0.8 hr^{-1}$ in Brisbane. In Seoul, natural ventilation was $1.15\pm1.73$ ACH with residential $NO_2$ decay rate of 0.94 hr^{-1}$ Source strength of $NO_2$ in the houses with gas range $(12.7\pm9.8$ ppb/hr) were significantly higher than those in houses with an electric range $(2.8\pm2,6$ ppb/hr) in Brisbane. In Seoul, source strength in the houses with gas range were $l6.8\pm8.2$ ppb/hr. Conclusively, indoor air quality using box model by mass balance was effectively characterized.

High Efficiency Hybrid Ion Exchange Chemical Filter for Removal of Acidic Harmful Gases (산성유해가스 제거를 위한 고효율 음이온교환 복합 폼 화학필터의 제조)

  • Jung, Youn Seo;Kim, In Sik;Hyeon, Seung Mi;Hwang, Taek Sung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.539-546
    • /
    • 2017
  • In this study, an outstanding anion exchange chemical filter was prepared for acidic gas removal. Commercial anion exchange resin was attached to polyurethane (PU) foam by using different types of pressure sensitive adhesive (PSA). The water and chemical resistance and also adhesive elongation were investigated. Also, the behavior of HCl and HF adsorption was evaluated as functions of the initial concentration and flow rate. ATE-701, AT-4000C and HCA-1000 showed 900, 1,500% and 2,400% of the elongation, respectively. It was confirmed that the desorption ratio of HCA-1000 was less than 6% and had excellent durability in water and chemical resistance tests. The adsorption occurred faster as the concentration and flow rate of HCl and HF increased. But 100% adsorption equilibrium occurred after 110 minutes, regardless of the concentration and flow rate. In addition, SEM morphology showed that the adhesive was uniformly dispersed, while the porous structure of the ion exchange resin was maintained, and the chemical filter exhibited excellent durability for the adsorption/desorption process.

The Foreign Asset Leverage Effect of Oil & Gas Companies after the Financial Crisis (금융위기 이후 정유산업의 외화자산 레버리지효과 분석)

  • Dong-Gyun Kim
    • Korea Trade Review
    • /
    • v.46 no.2
    • /
    • pp.19-38
    • /
    • 2021
  • This study aims to analyze the foreign asset leverage effect on Korean oil & gas companies' foreign profits and to maintain the appropriate foreign asset volume for reducing exchange risk. For a long time, large Korean companies, including oil companies, overheld foreign currency liabilities. For this reason, most large companies have been burdened to hedge exchange risk and this excess limit holding deteriorated total profit and reduced foreign currency asset management efficiency. Our paper proceeds in presenting a three-stage analysis considering diversified exchange risk factors through estimation on transformation of foreign transactions a/c including annual trends of foreign asset and industry specifics. We also supplement incomplete the estimation method through a practical hedging case investigation. Our research parts are differentiated on the analyzing four periods considering period-specifics The FER value of the oil firms ranged from -0.3 to +2.3 over the entire period. The results of the FER Value are volatile and irregular; those results do not represent the industry standard comparative index. The Korean oil firms are over the credit limit without accurate prediction and finance high interest rate funds from foreign-owned banks on the basis on a biased relationship. Since the IMF crisis, liabilities of global firms have decreased. Above all, oil firms need to finance a minimum limit without opportunity losses on the demand forecast and prepare for uncertainty in the market. To reduce exchange risk from the over-the-limit position, we must consider factors that affect the corporate exchange risk on the entire business process, including the contract phase.

The Impact of Exchange Rate and Exchange rate Volatility on Stock Returns (환율과 환율변동성이 주식수익률에 미치는 영향)

  • Lee, Sa-Young
    • International Area Studies Review
    • /
    • v.21 no.1
    • /
    • pp.181-200
    • /
    • 2017
  • This study investigates the impact of exchange rate and exchange rate volatility on the stock prices of eight industries from 2006 to 2015. The first and second exchange rate exposure of these eight industries is estimated with respect to four different exchange rates, namely the US dollar, Japanese yen, European currency unit, and British pound. In exchange rate exposure, stock prices in foods-beverages, paper-wood, electricity-gas, and banks industries are negatively related to exchange rate, whereas stock prices in electrical-electronic equp. and transport-equp. industries are positively related to exchange rate as expected. However stock price in machinery industry is negatively related to exchange rate, which is opposite to the expectation. Negative relationship is found between stock price in chemicals industry and exchange rate. In exchange rate volatility exposure, stock price in paper-wood industry is found to be negatively related to exchange rate volatility. Stock price in banks industry is also negatively related to exchange rate volatility. This result is opposite as expected, because banks are supposed to get more revenue by issuing derivatives related to foreign exchange when exchange rate volatility increases.

A Study on Estimation on Air Exchange Rate and Source Strength in Indoor Air Using Multiple Measurements of Nitrogen Dioxide (이산화질소 다중측정을 이용한 실내공기의 환기량 밀 발생량 추정에 관한 연구)

  • Yang, Won-Ho;Lee, Ki-Young;Chung, Moon-Ho;Zong, Moon-Shik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.1
    • /
    • pp.160-169
    • /
    • 2000
  • Daily indoor and outdoor nitrogen dioxide ($NO_2$) concentration for 30 days were measured in 28 houses with questionnaire of housing characteristics in Brisbane, Australia. Using mass balance equation and regression analysis, penetration factors and source strength factors were calculated. The penetration factors of 27 houses except one house were between zero and 1, though penetration factor should be between zero and 1 by means of mass balance equation. Relationship between indoor and outdoor concentrations in each 27 house was calculated using regression analysis. According to the obtained linear regression equation, the slope means penetration factor and the intercept means source strength factor. Calculated mean and standard deviation of coefficients of determination ($R^2$) in electric and gas range houses were $0.70{\pm}0.13$ and $0.57{\pm}0.21$, respectively. The source strength factors were more than zero in 27 houses. Mean and standard deviation of slopes in electric and gas range houses were $0.65{\pm}0.18$ and $0.56{\pm}0.12$, respectively. Mean and standard deviation of intercepts in electric and gas range houses were $1.49{\pm}1.25$ and $5.77{\pm}3.55$, respectively. Air exchange rate and source strength were calculated from penetration factor and source strength factor, respectively. Geometric mean and standard deviation of calculated air exchange rates in 27 houses were $1.1/hr{\pm}1.5$. Presence of gas range was the most significant factor contributing to indoor $NO_2$ level in house characteristics (p=0.003). In gas range houses, source strengths ranged from 4.1 to $33.1cm^3/hr{\cdot}m^3$ with a mean $12.7cm^3/hr{\cdot}m^3$ and a standard deviation 9.8. The source strengths of gas range houses were significantly different from those of electric range houses by t-test (p<0.001)

  • PDF

Selection of a carrying agent for obtaining radioactive methyliodide vapors under dynamic conditions

  • Obruchikov, Alexander V.;Merkushkin, Aleksei O.;Magomedbekov, Eldar P.;Anurova, Olga M.;Vanina, Elena A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2761-2766
    • /
    • 2021
  • A method for preparing "reagent" for radioactive methyliodide vapors production using an isotopic exchange reaction has been developed. Based on the obtained data of the isotopic exchange efficiency and hydraulic resistance, white fused alumina (700-840 ㎛) was selected as the carrying agent material for "reagent" production. The radioiodine isotopic exchange dependences on such parameters as temperature, gas flow velocity, and the methyliodide concentration in it were determined. Optimal conditions have been selected to achieve 85% of the isotopic exchange rate in 1 h of the experiment. The obtained data allowed to develop an approach to the test of iodine filters for nuclear power plants and to determine their efficiency.

Characteristics of Evaporation Heat Transfer in a Small-Scale Cryogenic Heat Exchange System for the Utilization of LNG Cold Energy (LNG 냉열활용을 위한 초저온 열교환시스템의 축소모형에서 증발 열전달 특성)

  • Nam S. C.;Lee S. C.;Lee Y. W.;Sohn Y. S.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.25-33
    • /
    • 1998
  • The characteristics of evaporation heat transfer for the utilization of LNG cold energy was investigated experimentally using liquified nitrogen and a solution of ethylene-glycol and water under horizontal two-phase conditions in the small-scale equipment of a cryogenic heat exchange system. The inner tubes in the double pipe heat exchanger with 8 mm and 15 mm inner diameter and 6 m length were adopted as a smooth test tubes and enhanced tubes by means of wire-coil inserts. Heat transfer coefficients and Nusselt number for the test tube were calculated from measurements of temperatures, flowrates and pressures. The correlations in a power-law relationship of the Nusselt number, the Reynolds number and Prandtl number for heat transfer were proposed which can be available for design of cryogenic heat exchangers. The correlations showed heat transfer coefficients for the wire-coil inserts were much higher than those for the smooth tubes, increased by more than 2.5 ${\~}$ 5.5 times depending upon the equivalent Reynolds number. Form and length of cryogenic double pipe heat exchanger were proposed for applicable to the utilization of LNG cold energy.

  • PDF

Enhancement of Gas Transfer Efficiency in an Intravascular Lung Assist Device using Blood Substitutes (혈관내의 폐보조장치에서 혈액대용물질을 사용한 기체전달 효율향상)

  • 김기범;박재관;권대규;정경락;이삼철
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.391-399
    • /
    • 2003
  • Intravascular oxygenation represents an attractive. alternative support modality for therapy originated with acute respiratory distress syndrome(ARDS). However. the clinical study concluded that more gas exchange was needed for intravascular oxygenation to be clinically effective in ARDS treatment. In this study, we tried to enhance gas exchange on the VIVLAD using microencapsulation of hemoglobin and perfluorocarbon emulsion(PFC emulsion). Blood gas measurements were performed by collecting blood samples from the arterial and venous sides of the circuit, and processing them in a blood/gas analyzer. The function of hemosome. blood/hemosome mixed solution. and blood/PFC emulsion mixed solution were tested by an oxygen dissociation curve using a blood/gas analyzer. As a result, it was shown that the oxygen transfer of hemosome and blood/hemosome mixed solution were higher than that of whole blood. Also. it showed that the carbon dioxide transfer of whole blood/PFC emulsion mixed solution was higher than that of others. Therefore, we determined that hemosome and PFC emulsion could increase oxygen transfer and carbon dioxide transfer. respectively.

Heat Recovery Characteristics of the Exhaust Heat Recovery System with Heat Pipe Unit Attached to the Hot Air Heater in the Greenhouse (히트파이프를 이용한 온풍난방기 배기열회수 시스템의 열회수 특성)

  • Kang, K. C.;Kim, Y. J.;Ryou, Y. S.;Baek, Y.;Rhee, K. J.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.441-448
    • /
    • 2001
  • Hot air heater with light oil combustion is used as the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat capacity of the oil burred. In order to recover the heat of this exhaust gas and to use for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The system consisted of a heat exchanger made of heat pipes, ø15.88${\times}$600mm located in the rectangular box of 675(L)${\times}$425(W)${\times}$370(H)mm, an air suction fan and air ducts. The number of heat pipe was 60, calculated considering the heat exchange amount between exhaust gas and air and heat transfer capacity of a heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/h depending on the inlet air temperature of 12 to -12˚at air flow rate of 1.100㎥/h. The temperature of the exhaust gas left the heat exchanger dropped to 100$^{\circ}C$ from 270$^{\circ}C$ after the heat exchange between the suction air and the exhaust gas.

  • PDF