• Title/Summary/Keyword: Gas entry pressure

Search Result 9, Processing Time 0.019 seconds

Gas Migration in Low- and Intermediate-Level Waste (LILW) Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설 폐쇄후 기체이동)

  • Ha, Jaechul;Lee, Jeong-Hwan;Jung, Haeryong;Kim, Juyub;Kim, Juyoul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.267-274
    • /
    • 2014
  • The first Low- and Intermediate-Level Waste (LILW) disposal facility with 6 silos has been constructed in granite host rock saturated with groundwater in Korea. A two-dimensional numerical modeling on gas migration was carried out using TOUGH2 with EOS5 module in the disposal facility. Laboratory-scale experiments were also performed to measure the important properties of silo concrete related with gas migration. The gas entry pressure and relative gas permeability of the concrete was determined to be $0.97{\pm}0.15bar$ and $2.44{\times}10^{-17}m^2$, respectively. The results of the numerical modeling showed that hydrogen gas generated from radioactive wastes was dissolved in groundwater and migrated to biosphere as an aqueous phase. Only a small portion of hydrogen appeared as a gas phase after 1,000 years of gas generation. The results strongly suggested that hydrogen gas does not accumulate inside the disposal facility as a gas phase. Therefore, it is expected that there would be no harmful effects on the integrity of the silo concrete due to gas generation.

Rounded Entry Orifice Characteristics for Pressurization Control (가압제어용 둥근 유입형 오리피스 특성)

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Jang, Je-Sung;Shin, Dong-Sung;Han, Sang-Yeop
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.401-404
    • /
    • 2008
  • Pressurization system in a liquid-propellant launcher supplies the controlled gas into the ullage volume of propellant tanks to feed propellants to combustion chamber by pressurizing propellants stored in propellant tanks. The ullage part of propellant tank should be constantly pressurized to supply the propellants stored in propellant tanks to turbo-pump or combustion chamber by pressurant pressurization system. Pressurant used to pressurize propellants is generally stored in a series of tanks at cryogenic temperature and high preassure inside an oxidizer tank. The reason is to store the quantity of pressurant as much as possible and to make pressurant tanks as small as (i.e. as light as) possible. However for test convenience pressurant tank is located at STP (standard temperature and pressure) environment in this study. Orifices are widely adapted to several pressurization systems in liquid rocket propulsion systems. Discharge coefficients of orifices are essentially needed for the optimized design of pressurization system in liquid rocket propulsion system. For this study gaseous nitrogen was served as pressurant and rounded entry orifices were employed. The forty-two (42) rounded entry orifices (the radii of curvatures are 0.5 and 1.0) have been tested experimentally in the supersonic flow region. The discharge coefficients of rounded entry orifices with inside diameters ranging from about 1.4 to 5.0mm was measured with 0.95 ${\sim}$ 0.99.

  • PDF

Thermal stress and Flow Analysis of a Cryogenic Ball Valve (초저온 볼밸브의 열 응력 및 유동해석)

  • Bae, S.K.;Lee, W.H.;Kim, H.S.;Kim, D.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.4
    • /
    • pp.8-13
    • /
    • 2006
  • The high pressure cryogenic ball valve is used to transfer the liquefied natural gas which temperature is $-196^{\circ}C$, supplied pressure is $168kgf/cm^2$. In the present work, the temperature distribution and thermal deformation is calculated numerically. The CAR and CFD methods are useful to predict the thermal matter and the inner flow field of high pressure cryogenic ball valve. For this reason, to optimum design of the cryogenic ball valve, the theological behavior of the supplied LNG in a cryogenic valve has been studied. The governing equations are discredited and solved numerically by the finite-volume method and finite-element method. In this study, we designed the high pressure cryogenic ball valve that accomplishes zero leakage by elastic seal at normal temperature and metal seal at high temperature.

  • PDF

The Study on Thin Film Fabrication using UHV-LCVD System (I) (UHV-LCVD 장치를 이용한 박막제작에 관한 연구 (I) - 장치 제작을 중심으로 -)

  • Choi, Won-Kook;Yun, Dug-Ju;Gong, Byung-In;Kim, Chang-Hyun;Whang, Chung-Nam;Jeong, Kwang-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.255-260
    • /
    • 1993
  • UHV-LCVD system was constructed for high quality silicon nitride thin film fabrication. This system consisted of a reaction chamber, an introduction chamber with sample load lock entry, a carbinet for gas manipulation controlling gas flow, a $CO_2$ laser and a Fourier transform mass spectrometer. Although the UHV-LCVD system construction was more sophisticated than low pressure CVD, highly pure thin films were fabricated by controlling gas mixing ratio and flow rate in ultra high vacuum surroundings.

  • PDF

Gas Injection Experiment to Investigate Gas Migration in Saturated Compacted Bentonite (포화 압축 벤토나이트 내 기체 이동 현상 관측을 위한 기체 주입 시험)

  • Jung-Tae Kim;Changsoo Lee;Minhyeong Lee;Jin-Seop Kim;Sinhang Kang
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.89-103
    • /
    • 2024
  • In the disposal environment, gases can be generated at the interface between canister and buffer due to various factors such as anaerobic corrosion, radiolysis, and microbial degradation. If the gas generation rate exceeds the diffusion rate, the gas within the buffer may compress, resulting in physical damage to the buffer due to the increased pore pressure. In particular, the rapid movement of gases, known as gas breakthroughs, through the dilatancy pathway formed during this process may lead to releasing radionuclide. Therefore, understanding these gas generation and movement mechanism is essential for the safety assessment of the disposal systems. In this study, an experimental apparatus for investigating gas migration within buffer was constructed based on a literature review. Subsequently, a gas injection experiment was conducted on a compacted bentonite block made of Bentonile WRK (Clariant Ltd.) powder. The results clearly demonstrated a sharp increase in stress and pressure typically observed at the onset of gas breakthrough within the buffer. Additionally, the range of stresses induced by the swelling phenomenon of the buffer, was 4.7 to 9.1 MPa. The apparent gas entry pressure was determined to be approximately 7.8 MPa. The equipment established in this study is expected to be utilized for various experiments aimed at building a database on the initial properties of buffer and the conditions during gas injection, contributing to understanding the gas migration phenomena.

An Investigation of Flow Characteristics of Radial Gas Turbine for Turbocharger under Unsteady Flow (과급기용 Radial Turbine의 비정상 유동특성에 관한 연구)

  • Choi, J.S.;Koh, D.K.;Winterbone, D.E.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.42-48
    • /
    • 1994
  • Turbocharging is one of the best methods to improve the performance of diesel engines, because of its merits,-power ratio, fuel consumption and exhaust emissions. Most of them in small and medium diesel engines have adopted the pulse turbocharging method with twin entry vaneless radial turbines to maximize the energy utility of exhaust gas. This method requires the high performance of turbine under unsteady flow, and also the matching between turbine and diesel engine is most important. However, it is difficult to match properly between them. Because the steady flow data are usually used for it. Accordingly, it is necessary to catch the characteristics of turbine performance correctly over the wide range of the operation conditions under unsteady flow. In this paper, the characteristics of turbine performance under unsteady flow are represented at varying conditions, such as inlet pressure amplitude, turbine speed and frequence.

  • PDF

Numerical Modelling of One Dimensional Gas Injection Experiment using Mechanical Damage Model: DECOVALEX-2019 Task A Stage 1A (역학손상모델을 이용한 1차원 기체 주입 시험 모델링: 국제공동연구 DECOVALEX-2019 Task A Stage 1A)

  • Lee, Jaewon;Lee, Changsoo;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.29 no.4
    • /
    • pp.262-279
    • /
    • 2019
  • In the engineering barriers of high-level radioactive waste disposal, gases could be generated through a number of processes. If the gas production rate exceeds the gas diffusion rate, the pressure of the gas increases and gases could migrate through the bentonite buffer. Because people and the environment can be exposed to radioactivity, it is very important to clarify gas migration in terms of long-term integrity of the engineered barrier system. In particular, it is necessary to identify the hydro-mechanical mechanism for the dilation flow, which is a very important gas flow phenomenon only in medium containing large amounts of clay materials such as bentonite buffer, and to develop and validate new numerical approach for the quantitative evaluation of the gas migration phenomenon. Therefore, in this study, we developed a two-phase flow model considering the mechanical damage model in order to simulate the gas migration in the engineered barrier system, and validated with 1D gas flow modelling through saturated bentonite under constant volume boundary conditions. As a result of numerical analysis, the rapid increase in pore water pressure, stress, and gas outflow could be simulated when the dilation flow was occurred.

Introduction to Researches on the Characteristics of Gas Migration Behavior in Bentonite Buffer (벤토나이트 완충재 내 기체 이동의 거동 특성 관련 연구 동향 소개)

  • Kang, Sinhang;Kim, Jung-Tae;Lee, Changsoo;Kim, Jin-Seoup
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.333-359
    • /
    • 2021
  • Gases such as hydrogen and radon can be generated around the canister in high-level radioactive waste disposal systems due to several reasons including the corrosion of metal materials. When the gas generation rate exceeds the gas diffusion rate in the low-permeability bentonite buffer, the gas phase will form and accumulate in the engineered barrier system. If the gas pressure exceeds the gas entry pressure, gas can migrate into the bentonite buffer, resulting in pathway dilation flow and advective flow. Because a sudden occurrence of dilation flow can cause radionuclide leakage out of the engineered barrier of the radioactive waste disposal system, it is necessary to understand the gas migration behavior in the bentonite buffer to quantitatively evaluate the long-term safety of the engineered barrier. Experimental research investigating the characteristics of gas migration in saturated bentonite and research developing numerical models capable of simulating such behaviors are being actively conducted worldwide. In this technical note, previous gas injection experiments and the numerical models proposed to verify such behaviors are introduced, and the future challenges necessary for the investigation of gas migration are summarized.

Experimental Study of Spray Characteristics on the Throttleable Dual Manifold Injector (이중 매니폴드 가변추력 분사기의 분무 특성에 관한 실험적 연구)

  • Youn, Jung-Soo;Kim, Sung-Hyuk;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.22-30
    • /
    • 2011
  • There is a many way of LPRE throttling methods, high-pressure-drop systems, dual-manifold injector, gas injection, multiple chambers, pulse modulation and movable injector components. Especially dual-manifold injector is essentially combines two fixed-area injectors into a common structure, with independent feed systems controlling flow to each injector manifold. In this paper, using indirect photography and liquid film thickness measurement with various injection pressure and tangential entry diameter to decide stability of spray over a wide thrust range in dual manifold injector.