• 제목/요약/키워드: Gas engine generation

검색결과 172건 처리시간 0.023초

발전용 소형가스터빈엔진 제어시스템 개발 (Development of Small-sized Gas Turbine Engine Control System for Power Generation)

  • 홍성진;김승민;육심균;남삼식
    • 한국유체기계학회 논문집
    • /
    • 제14권4호
    • /
    • pp.52-56
    • /
    • 2011
  • Small-sized gas turbine engine could be applied to various fields such as propulsion, power generation, machine driving, etc., and Doosan has been developing 5MW class gas turbine engine for power generation since 2005. To verify its design performance and operating characteristics, a gas turbine engine test facility was constructed, and control system was also established to satisfy rapid and reliable control performance. In this paper, the hardware specification and structure of control system for gas turbine engine are introduced, and test result for starting characteristics analysis and loading is also presented.

발전용 10kW급 천연가스엔진의 성능특성 (Performance Characteristics of a 10 kW Gas Engine for Generation Package)

  • 이영재;표영덕;김강출;권용호;오시덕
    • 설비공학논문집
    • /
    • 제15권8호
    • /
    • pp.697-703
    • /
    • 2003
  • Cogeneration is the simultaneous generation of heat and electricity in a single unit, and is a highly energy-efficient technology compared to the independent generation of both products. Therefore, cogeneration has been widely introduced in many countries for use in industrial, commercial and residential applications. However, there have been few models with an output of less than 100 kilowatt. In the present study, a spark ignited gas engine with electric generation output of 10 kilowatts was developed for micro cogeneration package. The gas engine shows 26.7% of electric generation efficiency, NOx emission less than 10 ppm at 13% oxygen, 82 dB of Noise level, and about 3 seconds of switching time from idling to nominal power.

석탄 합성가스를 사용한 가스엔진 발전시스템 운전 특성 (Operation Characteristics of Gas Engine Generator System using Coal Syngas)

  • 정석우;김문현;이승종;윤용승
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.800-803
    • /
    • 2007
  • Gasification has been regarded as a core technology in dealing with environmental pollutants and in obtaining higher efficiency for power generation. Among several ways in utilizing produced syngas from gasification, power generation would be the most prominent application. Syngas from coal was applied to the readily available LPG engine from automobiles. Main purpose was to identify the combustion characteristics in the modified gas engine when using syngas of low heating value and to test the modification optionsin the LPG gas engine. Gas engine rpm and the corresponding flue gas composition were measured for each syngas input condition. Results showed that even with syngas at the heating value of $1300{\sim}1800$ kcal/$Nm^3$ corresponding to the $6{\sim}7%$ of LPG heating value, gas engine operated successfully only with the problems of high CO and oxygen concentrations in the flue gas.

  • PDF

Performance Characteristics of a 10kW Gas Engine for Generation Package

  • Lee Young-Jae;Pyo Young-Dug;Kim Gang-Chul;Kwon Yong-Ho;Oh Si-Deok
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권3호
    • /
    • pp.141-147
    • /
    • 2004
  • Cogeneration has been widely introduced in many countries for use m industrial, commercial and residential applications. However, there have been few models with an output of less than 100kW. In the present study, a spark ignited gas engine with electric generation output of 10kW was developed for micro cogeneration package. Developed gas engine achieved following performance characteristics such as $26.7\%$ of electric generation efficiency, NOx emission less than 10 ppm at $13\%$ oxygen, 82 dB of noise level, and about 3 seconds of switching time from idling to nominal power.

합성 바이오가스를 이용한 상용 가스엔진 발전기의 구동 특성 (Testing a Commercial Gas Engine using Synthetic Biogas)

  • 심재훈;홍성구;권순국
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.592-597
    • /
    • 2005
  • Biogas is widely accepted as one of renewable energy. Raw biogas can be used in internal combustion engines either spark ignition or diesel engines. Since the gas has relatively low calorific values, engine power also is lower than rated power values. Modified engines or biogas-specific engines have been utilized in order to increase efficiency. Recently, gas engine/generators are provided for various purposes. They are mostly for LPG or natural gas. When biogas is fueled to the gas engines, de-rating is inevitable due to its lower calorific values. Meanwhile, massively produced commercial gas engines are more competitive in terms of initial investment for engines, compared to biogas-specific engines. Then, the characteristics of the commercial engine and power generation should be understood for better operation. A 5kW gas engine/generator(natural gas) was tested for determining an allowable maximum concentration of $CO_2$ in synthetic biogas, with respect to engine stating, power generation. Experimental results indicated that about 65% of methane concentration is required to start the gas engine. At this condition, the power generated was about 3 kW. It is about 60% of the nominal power, which is similar to the ratio of calorific values.

  • PDF

폐기물 열분해 합성가스를 이용한 발전용 엔진구동에 대한 실험적 연구 (An Experimental Study on the Operation of a Power Generation Engine with Syngas from RPF)

  • 정효재;이정우;이재욱;문지홍;최인수;박상신;황정호;류태우;이은도
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.48-56
    • /
    • 2010
  • Performances of power generation engine were investigated with syngas from RPF. A stoker type, multi-staged pyrolysis-gasification system, was employed for syngas generation and the syngas was refined with the sequential cleaning processes composed of a gas cooler, a bag filter and a wet scrubber. 20 kWe commercial syngas power generation engine was adopted to burn the cleaned syngas which is mainly composed of hydrogen, carbon monoxide, carbon dioxide and methane. The performance of the engine was tested with various syngas compositions and the results were compared to LNG case. Electric power output, exhaust gas temperature, and emission characteristics were measured, and the efficiency of engine generation was investigated as a function of load of power generation.

5MW급 발전용 가스터빈 엔진 성능시험 설비 (5MW Class Gas Turbine Engine Test Cell)

  • 남삼식;송주영;김성현;이기훈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.339-342
    • /
    • 2010
  • 두산중공업(주)은 개발 중인 5MW급 발전용 가스터빈의 작동 특성과 설계 인자들을 검증하기 위한 엔진 시험설비를 구축하였으며, 개발 엔진의 모든 성능 인자들을 안전하고 신뢰성 있게 평가하기 위해서 요구 조건을 충족시킬 수 있도록 엔진 테스트 셀을 설계하였다. 구축된 테스트 셀은 엔진의 시동에서 최대 출력조건까지 엔진의 전체 운전 상태를 효과적으로 재현할 수 있기 때문에 다양한 조건에서의 엔진시험 결과를 활용하여 지속적인 설계 개선을 위한 기반시설로 활용 가능하다. 더욱이 개발 엔진의 파생형 모델 개발과 상업모델 출고시험에 활용함으로써 엔진 제작사로서의 개발 경쟁력 제고에 기여할 수 있을 것으로 기대된다.

  • PDF

열병합발적용 Dual Fuel Engine의 질소산화물 배출저감에 관한 연구 (A Study on the Reduction of $NO_x$ Emission from Dual Fuel Engine for Co-generation System)

  • 정일래;김용술;심용식
    • 한국대기환경학회지
    • /
    • 제7권1호
    • /
    • pp.31-40
    • /
    • 1991
  • This study shows the correlation between $NO_x$ emission in the exhaust gas and various operation factors of dual fuel engine for Co-generation system. General tendency was shown that the thermal efficiency was lowered by the change of operation factors. However these were not confirmed on this experiment. Increasing T4 temperature (exhaust gas temperature at turbo-charger inlet) reduces $NO_x$ emission rate. The higher T4 temperature requires lower excess air as the excess air ratio is controlled by T4 temperature on gas mode operation. Another tendency was that $NO_x$ emission rate is reduced in case of increasing boost air temperature, quantity of pilot oil or bypassing flue gas through the exhaust gas boiler. The diameter of the fuel injection nozzle was changed smaller than design value and the injection timing was readjusted. Thus $NO_x$ emission rate could be reduced as retarding injection timing and changing hole diameter of fuel injection nozzle, however maxium engine out-put was decreased by changing fuel nozzle on the diesel mode operation.

  • PDF

소형 가스엔진 열병합 발전시스템 안전기준 개발 (A Study on the Safety Code Development of Gas Engine Micro Combined Heat and Power System)

  • 권준엽;김민우;이정운
    • 한국가스학회지
    • /
    • 제25권4호
    • /
    • pp.27-35
    • /
    • 2021
  • 최근 "전력 예비율" 급감에 대한 해결책으로 양방향 송배전이 가능한 마이크로 그리드로 전환되고 있다. 마이크로 그리드는 소규모 분산전원과 부하로 구성되는데, 분산전원의 대표적인 기술로 가정·건물에 적용하는 소형 열병합 발전시스템이 있다. 본 연구에서 가스 소비량 232.6kW(20만 kcal/h) 이내의 소형 가스엔진 발전시스템의 안전기준을 도출하고 발전 시스템, 냉각시스템, 윤활 시스템, 배기 시스템으로 구분하여 안전기준(안)을 개발하였다. 발전시스템의 경우 필터를 설치하고 가스 누출 및 엔진 회전수나 출력에 이상이 발생할 경우 이를 감지하여 시스템이 정지하도록 하였고, 냉각시스템은 냉각수 부족이나 과열이 발생할 경우 시스템이 정지하도록 규정하였다. 윤활 시스템은 윤활유의 압력과 온도를 모니터링 하고 이상이 발생할 경우 시스템을 정지하도록 하고, 배기 시스템은 국내·외 기준과 부합하여 배기가스 배출 농도 규제 값을 지정하였다. 본 연구 결과를 통해 가스엔진 발전시스템의 안전성을 향상시키고 제품 확산·보급에 이바지할 수 있다고 판단한다.

하이브리드 Tri-generation 가스엔진-유기랭킨사이클 시스템의 설계 및 열역학적 해석 (Design and Thermodynamic Analysis of Hybrid Tri-generation Gas Engine-Organic Rankine Cycle)

  • 성태홍;윤은구;김현동;최정환;채정민;조영아;김경천
    • 한국수소및신에너지학회논문집
    • /
    • 제26권1호
    • /
    • pp.79-87
    • /
    • 2015
  • In a gas engine, the exhaust and the engine cooling water are generated. The engine cooling water temperature is $100^{\circ}C$ and the exhaust temperature is $500^{\circ}C$. The amount of heat of engine cooling water is 43 kW and the amount of heat of exhaust is 21 kW. Eight different hybrid organic Rankine cycle (ORC) system configurations which considering different amount and temperature of waste heat are proposed for two gas engine tri-generation system and are thermodynamically analyzed. Simple system which concentrating two different waste heat on relatively low temperature engine cooling water shows highest thermal efficiency of 7.84% with pressure ratio of 3.67 and shaft power of 5.17 kW.