• Title/Summary/Keyword: Gas discharge plasma

Search Result 503, Processing Time 0.029 seconds

Decomposition Characteristics of Perfluorocompounds(PFCs) Gas through Gliding Arc Plasma with Hydrogen Gas (수소 가스를 첨가한 글라이딩 아크 플라즈마의 과불화화합물(PFCs) 가스 분해 특성)

  • Song, Chang-Ho;Park, Dong-Wha;Shin, Paik-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.65-70
    • /
    • 2011
  • Perfluorocompounds (PFCs) gases were decomposed by gliding arc plasma generated by AC pulse power. $N_2$ gas of 10 LPM flow rate and $H_2$ gas of 0.5 LPM were introduced into the gliding arc plasma generated between a pair of electrodes with SUS 303 material, and the PFCs gases were injected in the plasma and thereby were decomposed. The PFCs gas-decomposition-characteristics through the gliding arc plasma were analyzed by FT-IR, where pure $N_2$ and $H_2$-added $N_2$ environment were used to generate the gliding arc plasma. The PFCs gas-decomposition-properties were changed by electric power for gliding arc plasma generation and the H2 gas addition was effective to enhance the PFCs decomposition rate.

A Compact Pulse Corona Plasma System with Photocatalyst for an Air Conditioner (광촉매와 조합된 코로나 방전 플라즈마 필터의 유해 가스 및 입자 제거 특성)

  • Shin, Soo-Youn;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.151-155
    • /
    • 2007
  • A compact discharge plasma system with a photocatalyst has been proposed and investigated experimentally for application to air conditioners. It was found that there was intense ultra violet radiation with high energy of 3.2 eV from the corona discharge due to the DC-biased pulse voltage applied on a wire. An electrophotochemical reaction took place apparently on the surfaces of the photocatalyst of $TiO_2$ irradiated ultra violet front the discharge plasma in the proposed plasma system. The proposed discharge plasma system with the photocatalyst of $TiO_2$ showed very high removal efficiency of VOCs by tile additional electrophotochemical reactions on the photocatalyst. The proposed discharge plasma system also showed very high removal efficiency of particles such as smokes, suspended bacteria, and pollen and mite allergens by the electrostatic precipitation part. This type of corona discharge plasma system with a photocatalyst can be used as an effective means of removing both indoor pollutant gases and particles including suspended allergens.

Discharge Properties of an AC-Plasma Display Panel

  • Sungkyoo Lim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1998
  • Two kinds of the ac-plasma display panel (PDP) with the comb type and the matrix type electrodes were fabricated. The discharge properties were studied as a function of as species (Ne and Ne+He+Xe) and its pressure. The firing voltages (Vf) of the PDP with comb type electrodes were 159 V and 195 V under pure Ne and ne+He+Xe(68:30:2) gas mixture respectively. In case of PDP cell with the matrix type electrodes the Vf was increased to 200 V for pure Ne and 240 V for Ne+He+Xe gas mixture under the same gas pressure(300 mbar).

Analysis of characteristics of discharge in liquid

  • Kim, Ju-Sung;Min, Boo-Ki;Hong, Young-June;Kang, Seong-Oun;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.209.2-209.2
    • /
    • 2016
  • Up to now, Plasma applications are thought as a leading technology in industrial, chemical and even medical and biological field. Especially, Due to direct discharge in liquid with reaction in ambient solution, plasma in liquid is useful plasma technology. Such as electro-surgery, water purification, radical generation for synthesis. For using those plasma applications efficiently, plasma characteristics should be understood in advance. But discharge in liquid is not much well-known about its characteristics. And plasma discharge in solution is difficult to generate and analysis due to electrolysis, vaporization and radical generation. So, We make stable plasma discharge in solution(saline 0.9%) without input gas. We also analyze new type of plasma source in thermal and electrochemical view. And we check characteristics of plasma in liquid. For example, plasma density and radical density(OH) with optical emission, thermal energy with thermometer, electrical energy with oscilloscope and so on. And we try to explain the bubble and plasma formation with circuit analysis.

  • PDF

Microdischarge using priming particles for reducing neon emission in AC plasma display panel with Ne-Xe-He gas mixture

  • Kim, Hyun;Jang, Sang-Hun;Tae, Heung-Sik;Chien, Sung-Il;Lee, Dong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.284-290
    • /
    • 2006
  • This study uses neon, xenon, and helium gas mixture microdischarge to determine the effects of priming particles on the neon emission characteristics in an alternate current plasma display panel (AC PDP). The infrared (823 nm) and neon emission (585 nm) intensities are measured and compared in the blue cells in the case of new discharge with priming particles or conventional discharge without priming particles, respectively. It is found that the priming particles can produce a plasma discharge effectively even under the weak electric field condition, thereby resulting in reducing the neon emission intensity remarkably without sacrificing the IR emission intensity. As a result, it is found that the Ne emission intensity is reduced by about 46.4 % but the blue visible emission intensity is increased by about 15.2 % when compared with the conventional discharge without priming particles.

Carbon Nanotube Synthesis using Magnetic Null Discharge Plasma Production Technology

  • Sung, Youl-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.532-536
    • /
    • 2007
  • Carbon nanotube (CNT) properties, produced using a magnetic null discharge (MND) plasma production technology, were investigated. We firstly deposited the Fe layer 200 nm in thickness on Si substrate by the magnetic null discharge sputter method at the substrate temperature of $300도C$, and then prepared CNTs on the catalyst layer by using the magnetic null discharge (MND) based CVD method. CNTs were deposited in a gas mixture of CH4 and N2 at a total pressure of 1 Torr by the MND-CVD method. The substrate temperature and the RF power were $650^{\circ}C$ and 600W, respectively. The characterization data indicated that the proposed source could synthesize CNTs even under relatively severe conditions for the magnetic null discharge formation.

The Surface Energy Change of TAC Film Treated by an Atmospheric Pressure Plasma (대기압 플라즈마 처리에 의한 TAC 필름의 표면에너지 변화)

  • Lee, Chang-Ho;Jung, Do-Young;Park, Young-Jik;Song, Hyun-Jig;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.184-190
    • /
    • 2009
  • Tri-acetyl-cellulose(TAC) film surface was modified by atmospheric-pressure plasma technique to obtain the hydrophilic functional groups and improve the contact angle. TAC film was modified with N2 plasma ionized in dielectric barrier discharge(DBD) reactor under atmospheric pressure. We measured the change of the contact angle and the surface energy with respect to the plasma treatment conditions such as plasma treatment power, discharge gap and N2 gas flow rate. As the plasma treatment speed of 100[mm/sec], the plasma treatment power of 1.5[kW], discharge gap 2[mm] and the $N_2$ gas flow rate 140[LPM], the best contact angle and the highest surface energy were obtained. The degree of hydrophilization depended strongly on the plasma-treating time and discharge power.

A Study on the 0-Dimensional Simulation of He+Ne+Xe Gas and the Discharge Characteristics in Plasma Display Panel (플라즈마 디스플레이 패널용 He+Ne+Xe 혼합가스에서 소량 Xe 함유에 대한 영 차원 수치해석과 방전특성연구)

  • Jeong, Hae-Yeong;Choe, Hun-Yeong;Kim, Geun-Su;Kim, Seong-Ik;Song, Bong-Sik;Park, Heon-Geon;Lee, Seok-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.9
    • /
    • pp.436-442
    • /
    • 2002
  • Recently color AC PDP(plasma display panel) technology is rapidly improved. However, the luminous efficiency improvement is a key issue for making plasma display into a large-area flat display. In this paper, we suggest a new concentration of Xe in He-Ne-Xe gas mixture in order to achieve a high luminous efficiency of color AC PDPs. We calculated the densities of 25 species as a function of the time zero dimensional simulation using CVODE solver and we compared the results of zero dimensional simulation with a measurement of photo wave brightness and luminous efficiency, in order to find the optimum mixing condition of He-Ne-Xe gas in color plasma display panel. We obtained a high discharge speed under Xe mixing ratio of 1% by simulation and confirmed that through measuring photo wave.

Micro-gap DBD Plasma and Its Applications

  • Zhang, Zhitao;Liu, Cheng;Bai, Mindi;Yang, Bo;Mao, Chengqi
    • Journal of the Speleological Society of Korea
    • /
    • no.76
    • /
    • pp.37-42
    • /
    • 2006
  • The Dielectric Barrier Discharge (DBD) is a nonequilibrium gas discharge that is generated in the space between two electrodes, which are separated by an insulating dielectric layer. The dielectric layer can be put on either of the two electrodes or be inserted in the space between two electrodes. If an AC or pulse high voltage is applied to the electrodes that is operated at applied frequency from 50Hz to several MHz and applied voltages from a few to a few tens of kilovolts rms, the breakdown can occur in working gas, resulting in large numbers of micro-discharges across the gap, the gas discharge is the so called DBD. Compared with most other means for nonequilibrium discharges, the main advantage of the DBD is that active species for chemical reaction can be produced at low temperature and atmospheric pressure without the vacuum set up, it also presents many unique physical and chemical process including light, heat, sound and electricity. This has led to a number of important applications such as ozone synthesizing, UV lamp house, CO2 lasers, et al. In recent years, due to its potential applications in plasma chemistry, semiconductor etching, pollution control, nanometer material and large area flat plasma display panels, DBD has received intensive attention from many researchers and is becoming a hot topic in the field of non-thermal plasma.

Decomposition of Acetonitrile by Planar Type Dielectric Barrier Discharge Reactor (평판형 유전체 장벽 방전 반응기에서 Acetonitrile의 분해 특성)

  • 송영훈;김관태;류삼곤;이해완
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.105-112
    • /
    • 2002
  • A combined process of non-thermal plasma and catalytic techniques has been investigated to treat toxic gas compounds in air. The treated gas in the present study is $CH_3$CN that has been known to be a simulant of toxic chemical agent. A planar type dielectric barrier discharge(DBD) reactor has been used to generate non-thermal plasma that produces various chemically active species, O, N, OH, $O_3$, ion, electrons, etc. Several different types of adsorbents and catalysts, which are MS 5A, MS 13X, Pt/alumina, are packed into the plasma reactor, and have been tested to save power consumption and to treat by-products. Various aspects of the present techniques, which are decomposition efficiencies along with the power consumption, by-product analysis, reaction pathways modified by the adsorbents and catalysts, have been discussed in the present study.