• Title/Summary/Keyword: Gas detection

Search Result 1,194, Processing Time 0.034 seconds

The Chemically Induced Hot Electron Flows on Metal-Semiconductor Schottky nanodiodes During Hydrogen Oxidation

  • Lee, Hyosun;Lee, Youngkeun;Lee, Changhwan;Kim, Sunmi;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.152-152
    • /
    • 2013
  • Mechanism of energy conversion from chemical to electrical during exothermic catalytic reactions at the metal surfaces has been a fascinating and crucial subject in heterogeneous catalysis. A metal-semiconductor Schottky nanodiode is novel device for direct detection of chemically induced hot electrons which have sufficient energy to surmount the Schottky barrier. We measured a continuous chemicurrent during the hydrogen oxidation under of 760 Torr of O2 and 6 Torr of H2 by using Pt/Si and Pt/TiO2 nanodiodes at reaction temperatures and compared the chemicurrent with the reaction turnover rate. The thermoelectric current was measured by carrying out an experiment under O2 condition for elimination of the background current. Gas chromatograph and source meter were used for measurement of the chemical turnover rate and the chemicurrent, respectively. The correlation between the chemicurrent and the chemical turnover rate under hydrogen oxidation implies how hot electrons generated on the metal surface affect hydrogen oxidation.

  • PDF

Simultaneous analysis of sugars by HPLC (HPLC를 이용한 당류의 동시분석법)

  • 허부홍;서형석;김성문;김영진;조종후
    • Korean Journal of Veterinary Service
    • /
    • v.23 no.2
    • /
    • pp.137-142
    • /
    • 2000
  • In order to develop a good separation and simultaneous analysis of different sugar in an artificial mixed sugar solution, we analyzed 10 sugar components in an artificial mixed sugar solution composed of fructose, glucose, mannitol, sucrose, maltose, lactose, xylose, xylitol erythritol, and trehalose with using HPLC-ELSD or HPLC-RI. Separation and quantification by HPLC-ELSD was superior to those by HPLC-RI and detection sensitivity by HPLC-ELSD was higher then that by HPLC-RI as micorgram($\mu\textrm{g}$) level. 1. The units of minimal detectable limits were showed $\mu\textrm{g}$/$m\ell$ and ng/$m\ell$ by the HPLC-RI and HPLC-ELSD, respectively. 2. The condition of ELSD was drift tube temperature $82^{\circ}C$, $N_2$ gas flow rate 2.10 SLPM, and colum oven temperature $30^{\circ}C$, respectively. Isolation and recovery rates of single sugar from the multiple sugar solution was higher at the condition (time: flow rate: D.W.:ACN MeOH, min : $m\ell$/min:v:v:v) of linear gradient elution of mobile phase as 0 : 1.00 : 15 : 85 : 0.1 : 1.00 : 6 : 90 : 4, 17 : 1.00 : 10 : 70 : 20, 28 : 1.00 : 15 : 85 : 0 an 35 : 1.00 : 15 : 85 : 0, in order.

  • PDF

Performance Analysis of a Vibrating Microgyroscope using Angular Rate Dynamic Model (진동형 마이크로 자이로스코프의 각속도 주파수 동역학적 모델의 도출 및 성능 해석)

  • Hong, Yoon-Shik;Lee, Jong-Hyun;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.89-97
    • /
    • 2001
  • A microgyroscope, which vibrates in two orthogonal axes on the substrate plane, is designed and fabricated. The shuttle mass of the vibrating gyroscope consists of two parts. The one is outer shuttle mass which vibrates in driving mode guided by four folded springs attached to anchors. And the other is inner shuttle mass which vibrates in driving mode as the outer frame does and also can vibrate in sensing mode guided by four folded springs attached to the outer shuttle mass. Due to the directions of vibrating mode, it is possible to fabricate the gyroscope with simplified process by using polysilicon on insulator structure. Fabrication processes of the microgyroscope are composed of anisotropic silicon etching by RIE, gas-phase etching (GPE) of the buried sacrificial oxide layer, metal electrode formation. An eletromechanical model of the vibrating microgyroscope was modeled and bandwidth characteristics of the gyroscope operates at DC 4V and AC 0.1V in a vacuum chamber of 100mtorr. The detection circuit consists of a discrete sense amplifier and a noise canceling circuit. Using the evaluated electromechanical model, an operating condition for high performance of the gyroscope is obtained.

  • PDF

Analysis of Chloride with the Moderate Power Helium Microwave Induced Plasma by Generating Volatile Gas Generation (중급출력 헬륨 마이크로파 유도 플라즈마를 이용한 염소이온의 분석)

  • Yong-Nam Park;Heoungbin Lim;Chang-Joon Park;Kwang-Woo Lee
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.238-242
    • /
    • 1992
  • Traces of Chloride in aqueous solution was converted to volatile HCl or $Cl_2$ by acids to be analyzed by the moderate power (500W) Helium Microwave Induced Plasma. Optimum conditions were obtained and the detection limit was found to be 4.3 ppm which is about ten times more sensitive compared to the direct analysis of aqueous samples. In addition to the batch type, a continuous type analysis was studied as well.

  • PDF

Biosynthetic Pathway of Indole-3-Acetic Acid in Basidiomycetous Yeast Rhodosporidiobolus fluvialis

  • Bunsangiam, Sakaoduoen;Sakpuntoon, Varunya;Srisuk, Nantana;Ohashi, Takao;Fujiyama, Kazuhito;Limtong, Savitree
    • Mycobiology
    • /
    • v.47 no.3
    • /
    • pp.292-300
    • /
    • 2019
  • IAA biosynthetic pathways in a basidiomycetous yeast, Rhodosporidiobolus fluvialis DMKU-CP293, were investigated. The yeast strain showed tryptophan (Trp)-dependent IAA biosynthesis when grown in tryptophan supplemented mineral salt medium. Gas chromatography-mass spectrometry was used to further identify the pathway intermediates of Trpdependent IAA biosynthesis. The results indicated that the main intermediates produced by R. fluvialis DMKU-CP293 were tryptamine (TAM), indole-3-acetic acid (IAA), and tryptophol (TOL), whereas indole-3-pyruvic acid (IPA) was not found. However, supplementation of IPA to the culture medium resulted in IAA peak detection by high-performance liquid chromatography analysis of the culture supernatant. Key enzymes of three IAA biosynthetic routes, i.e., IPA, IAM and TAM were investigated to clarify the IAA biosynthetic pathways of R. fluvialis DMKU-CP293. Results indicated that the activities of tryptophan aminotransferase, tryptophan 2-monooxygenase, and tryptophan decarboxylase were observed in cell crude extract. Overall results suggested that IAA biosynthetic in this yeast strain mainly occurred via the IPA route. Nevertheless, IAM and TAM pathway might be involved in R. fluvialis DMKU-CP293.

Comparative Pharmacokinetics for Dermal Application of a New SYC-fentanyl Patch in Rabbits (토끼에 있어서 SYC-fentanyl패취제의 경피투여 동태비교)

  • 신호철;이영미;최학수;이정훈;유현석;한상섭
    • YAKHAK HOEJI
    • /
    • v.44 no.2
    • /
    • pp.189-192
    • /
    • 2000
  • We examined a dermal pharmacokinetics for a new SYC-fentanyl patch in rabbits. Determination of fentanyl in the plasma was performed using a gas chromatography with nitrogen-phosphorus detection system and a capillary column. One patch per animal (fentanyl 2.5 mg) was applied to clipped back skin for 72 hours. The plasma fentanyl concentration profile of SYC-patch was similar to that of a conventional patch (Durogesi $c^{R}$, Janssen Co.). No significant difference was observed in the pharmacokinetic parameters, the area under the concentration-time curve (AU $C^{0-}$72hrs/) and the total area under the first moment-time curve (AUM $C^{0-}$7hrs/), between the two patch types. The AU $C^{0-}$7hrs/ and AUM $C^{0-}$72hrs/ of durogesi $c^{R}$ were 183.3$\pm$46.28 ng*hr/ml and 6,450$\pm$1,939ng*h$r^2$/ml, and those of SYC-fentany patch were 217.2$\pm$50.51$\pm$ng*hr/ml and 8,022$\pm$2,245ng*h$r^2$/ml, respectively (n=3). This result indicates that the new SYC patch has a similar bioavailability compared to durogesi $c^{R}$ patch. Therefore, the SYC-patch may be considered as a bioequivalent fentanyl patch.patch.tch.

  • PDF

Performance evaluation of 80 GHz FMCW Radar for level measurement of cryogenic fluid

  • Mun, J.M.;Lee, J.H.;Lee, S.C.;Sim, K.D.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.56-60
    • /
    • 2021
  • The microwave Radar used for special purposes in the past is being applied in various areas due to the technological advancement and cost reduction, and is particularly applied to autonomous driving in the automobile field. The FMCW (Frequency Modulated Continuous Wave) Radar can acquire level information of liquid in vessel based on the beat frequency obtained by continuously transmitting and receiving signals by modulating the frequency over time. However, for cryogenic fluids with small impedance differences between liquid medium and gas medium, such as liquid nitrogen and liquid hydrogen, it is difficult to apply a typical Radar-based level meter. In this study, we develop an 80 GHz FMCW Radar for level measurement of cryogenic fluids with small impedance differences between media and analyze its characteristics. Here, because of the low intrinsic impedance difference, most of the transmitted signal passes through the liquid nitrogen interface and is reflected at the bottom of the vessel. To solve this problem, a radar measurement algorithm was designed to detect multiple targets and separate the distance signal to the bottom of the vessel in order to estimate the precise position on the liquid nitrogen interface. Thereafter, performance verification experiments were performed according to the liquid nitrogen level using the developed radar level meter.

The Design and Implementation of the Fire Spot Display System Using s Smart Device (스마트 기기를 이용한 화점 표출 시스템의 설계 및 구현)

  • Kim, Sang-Gi;Kim, Dong Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1287-1292
    • /
    • 2018
  • In case of fire, the information related with the fire need to be provided to fire fighters in order to extinguish the fire efficiently. However, existing fire detection systems have the problem not to provide the data of the fire to fire fighters visually. In this paper, we propose the fire spot system using a cloud server to solve this problem. In the proposed system, the sensors installed in a building collect the gas and temperature data and store them into the cloud database using a wireless network. For fire fighters in the field, the details and history of the fire spot are displayed visually on top of the blue print retrieved from the cloud database using a smart device.

Effects of Lactic Acid Bacteria Inoculant on Fermentation Quality and in vitro Rumen Fermentation of Total Mixed Ration

  • Choi, Yeon Jae;Lee, Sang Suk
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.132-140
    • /
    • 2019
  • Fermented total mixed ration (TMR) is a novel feed for ruminants in South Korea. The purpose of this study was to evaluate the effects of lactic acid bacteria (LAB) on the quality of TMR and in vitro ruminal fermentation. Strains of three LAB spp. (Lactobacillus plantarum, L. brevis, L. mucosae) were used in fermentation of TMR. Inoculations with the three LAB spp. lowered pH and increased concentrations of lactic acid, acetic acid, and total organic acid compared to non-LAB inoculated control (only addition of an equivalent amount of water) (p<0.05). Bacterial composition indicated that aerobic bacteria and LAB were higher. However, E. coli were lower in the fermented TMR than those in the control treatment (p<0.05). Among the treatments, L. brevis treatment had the highest concentration of total organic acid without fungus detection. Gas production, pH, and ammonia-nitrogen during ruminal in vitro incubation did not differ throughout incubation. However, ruminal total VFA concentration was higher (p<0.05) in the LAB spp. treatments than the control treatment at 48 hours. Overall, the use of L. brevis as an inoculant for fermentation of high moisture. TMR could inhibit fungi growth and promote lactic fermentation, and enhance digestion in the rumen.

Flexible Hydrogen Sensor Using Ni-Zr Alloy Thin Film

  • Yun, Deok-Whan;Park, Sung Bum;Park, Yong-il
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.297-303
    • /
    • 2019
  • A triple-layered $PMMA/Ni_{64}Zr_{36}/PDMS$ hydrogen gas sensor using hydrogen permeable alloy and flexible polymer layers is fabricated through spin coating and DC-magnetron sputtering. PDMS(polydimethylsiloxane) is used as a flexible substrate and PMMA(polymethylmethacrylate) thin film is deposited onto the $Ni_{64}Zr_{36}$ alloy layer to give a high hydrogen-selectivity to the sensor. The measured hydrogen sensing ability and response time of the fabricated sensor at high hydrogen concentration of 99.9 % show a 20 % change in electrical resistance, which is superior to conventional Pd-based hydrogen sensors, which are difficult to use in high hydrogen concentration environments. At a hydrogen concentration of 5 %, the resistance of electricity is about 1.4 %, which is an electrical resistance similar to that of the $Pd_{77}Ag_{23}$ sensor. Despite using low cost $Ni_{64}Zr_{36}$ alloy as the main sensing element, performance similar to that of existing Pd sensors is obtained in a highly concentrated hydrogen atmosphere. By improving the sensitivity of the hydrogen detection through optimization including of the thickness of each layer and the composition of Ni-Zr alloy thin film, the proposed Ni-Zr-based hydrogen sensor can replace Pd-based hydrogen sensors.