• Title/Summary/Keyword: Gas cooling

Search Result 1,095, Processing Time 0.047 seconds

Characteristics of Hg, Pb, As, Se Emitted from Medium Size Waste Incinerators (중형폐기물 소각시설의 수은, 납, 비소, 셀렌 배출특성)

  • Lee Han-Kook
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.1 s.88
    • /
    • pp.8-18
    • /
    • 2006
  • The aim of this study is to evaluate the emission characteristics of mercury, lead, arsenic, and selenium from medium size municipal solid waste incinerators(MSWIs) in Korea. The concentrations of mercury, lead, arsenic, and selenium emitted from medium size MSWI stack were $2.67\;{\mu}g/Sm^3,\;0.38\;mg/Sm^3,\;1.33\;{\mu}g/Sm^3,\;0.28\;{\mu}g/Sm^3$, respectively. The concentration levels of mercury, lead, arsenic in flue gas from medium size MSW incinerator stacks selected were nearly detected under the Korea criteria level. Removal efficiencies of mercury, lead, arsenic, and selenium in waste heat boiler(WHE) and cooling tower(CT) were $90.36\%,\;69.76\%,\;43.04\%,\;40.64\%$, respectively. In general, the removal efficiencies of mercury and lead in WHE were higher than those of arsenic and selenium in WHE. Emission gas temperature reduction from waste heat boiler(WHB) and cooling tower(CT) can control mercury and lead of medium size MSWIs. To evaluate the relationship between mercury, lead, arsenic, selenium of fly ash and those of flue gas, it was carried out to correlation analysis of each metal concentration in the fly ash and in the flue gas from medium size MSWIs. From the correlation analysis, the coefficients of mercury, lead, arsenic, and selenium were 0.61, -0.38, 0.87, 0.28, respectively. The results of correlation analysis revealed that it should be highly positive to the correlation coefficients of mercury and arsenic in the fly ash and those of the flue gas emitted from medium size MSWIs. As it were, the concentrations of mercury and arsenic of flue gas from medium size MSWIs are high unless mercury and arsenic in fly ash are properly controlled in dust collection step in medium size MSWIs. It was also concluded that mercury, lead, arsenic, and selenium from MSWIs stacks could be controlled by waste heat boiler(WHE) and dust collecting step in medium size MSWIs.

Energy Performance Evaluation of Building Micro-grid System Including Micro-turbine in Hospital Buildings (마이크로터빈이 포함된 빌딩마이크로그리드시스템의 병원건물의 에너지성능평가)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.279-283
    • /
    • 2009
  • Distributed generation(DG) of combined cooling, heat. and power(CCHP)has been gaining momentum in recent year as efficient, secure alternative for meeting increasing energy demands. This paper presents the energy performance of microturbine CCHP system equipped with an absorption chiller by modelling it in hospital building. The orders of study were as following. 1)The list and schedule of energy consumption equipment in hospital were examined such as heating and cooling machine, light etc. 2) Annual report of energy usage and monitoring data were examined as heating, cooling, DHW, lighting, etc. 3) The weather data in 2007 was used for simulation and was arranged by meteorological office data in Daejeon. 4) Reference simulation model was built by comparison of real energy consumption and simulation result by TRNSYS and ESP-r. The energy consumption pattern of building were analyzed by simulation model and energy reduction rate were calculated over the cogeneration. As a result of this study, power generation efficiency of turbine was about 30% after installing micro gas turbine and lighting energy as well as total electricity consumption can be reduced by 40%. If electricity energy and waste heat in turbine are used, 56% of heating energy and 67% of cooling energy can be reduced respectively, and total system efficiency can be increased up to 70%.

  • PDF

An Experimental Study on the Performance Prediction Logic for a Regenerative Cooling System (재생냉각시스템의 성능예측기법에 관한 실험적 연구)

  • Jung, Se-Yong;Lee, Yang-Suk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.396-405
    • /
    • 2009
  • The experimental research was conducted to setup a performance prediction logic for the regenerative cooling system on a small scale liquid rocket engine using kerosene and LOX. Total heat flux of the combustion gas side was determined for the flow rate of the coolant, combustion pressure using the calorimeter thrust chamber. Based on the experimental investigation, a performance prediction scheme for the regenerative cooling system is setup in our own way. A performance prediction logic for the regenerative cooling system has been developed by the correction scheme of the combustion gas side. The key parameters determining the temperature limitation of the coolant are the mass flow rate of the coolant and the length of the combustion chamber and the nozzle. And the parameters to control the limitation of the usable wall temperature are the number of channels and wall thickness.

A Study on Cooling Rate and Dendrite Arm Spacing of Gas Atomized $Al_{87.3}misch$ $metal_{8.3}Ni_{4.4}$ Powder (가스아토마이징된 $Al_{87.3}misch$ $metal_{8.3}Ni_{4.4}$ 분말의 냉각속도와 수지상 가지 가격에 관한 고찰)

  • Kim, Ji-Hun;Ye, Byung-Joon;Kim, Young-Hawn
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.54-65
    • /
    • 1999
  • The present work is an attempt to evaluate the relationship between dendrite arm spacing and average cooling rate in gasatomized $Al_{87.3}misch$ $metal_{8.3}Ni_{4.4}$ powder by means of the following methods. One is calculation of heat transfer coefficient and average cooling rate, which are derived from estimated particle velocity during gas-atomization. The other is measurement of secondary dendrite arm spacing, which are observed on the particle surface. Then, we make experimental equation for this relationship in case of permanent mold casting and compare it with similar equation in case of rapidly solidified powder. Both average cooling rates and solidification rates are considered to represent the variance of dendrite arm spacings in two types soidification route. Even though there is a considerable difference in each average cooling rate, the dendrite arm spacing values are similar in two cases; particle diameter, $100\;{\mu}m$, and casting width, 2.05 mm. It is because that each solidification route has similar solidification rate.

  • PDF

Economic Analysis of Heat Pump System in Educational Building -Focused on the High School of Twenty Four Classes- (교육용 건축물의 히트펌프 냉난방시스템에 대한 경제성 분석 -24학급 규모의 고등학교를 중심으로-)

  • Park, Ryul;Park, Min-Yong;Kim, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.879-887
    • /
    • 2003
  • Buildings with heating and cooling systems have been increased, since the requirement of thermal comfort for residents is grown. Heating and cooling systems, have been changed from two separate systems to one multi-function system which includes both heating and cooling. Especially, heat pump heating and cooling system has been adopted for general classrooms in schools since education environment improvement project has been launched. This research suggests the best option for the heat pump heating and cooling system in educational buildings through economic assessments for four alternative systems based on electric heat pump (EHP) and gas engine driven heat pump (GHP), which are most widely used for elementary, middle and high schools. The model buildings are in the Y high school which has 24 classes of new construction building, which will be built soon. Annual energy consumption for alternative systems uses BECS 3.10, which can be used for system simulation.

Material Trends of Nozzle Extension for Liquid Rocket Engine (액체로켓엔진 노즐확장부 소재기술 동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.139-149
    • /
    • 2011
  • The combustion chamber and nozzle of a liquid rocket engine need thermal protection against the high temperature combustion gas. The nozzle extension of a high-altitude engine also has to be compatible with high temperature environment and several kinds of cooling methods including gas film cooling, ablative cooling and radiative cooling are used. Especially for an upper-stage nozzle extension having a large expansion ratio, the weight impact on the launcher performance is crucial and it necessitated the development of light-weight refractory material. The present survey on the nozzle extension materials employed in the liquid rocket engines of USA, Russia and European Union has revealed a trend that the heavier metals like stainless steels and titanium alloys are being substituted with light weight carbon fiber or ceramic matrix composite materials.

  • PDF

Studies on the Heat Transfer Characteristics of Citrus Fruits (I) On the Cooling Process of Packed Bed of Citrus Unshu (감귤의 열전달 특성에 관한 연구 - (I) 온주밀감충전층의 냉각과정에 대하여 -)

  • Hur Jong-Wha;Kim Suk-Hyun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.7 no.2
    • /
    • pp.80-86
    • /
    • 1978
  • The distribution of temperature obtained by the solution of Schumann equation and that of experimentally obtained on tile cooling process of packed bed of citrus unshu show a good agreement, and the maximum deviation is only $1-2^{\circ}C$. The agreement means that it is possible to apply the Schumann model to the cooling process of packed bed of citrus unshu. In considering respiration heat, the numberical result by the solution of the equation is that in case of the velocity of gas $(3^{\circ}C)$ is above 1m/sec, becomes below 0.01 and effect of respiration heat is negligible and in case of below 1m/sec the velocity of gas $(3^{\circ}C)$ is above 0.01 and the effect of respiration heat must be consideied. We Present the Practically easily applicable figure of cooling characteristic line on the both . cases of short term cooling Process and long time storage of citrus unshu.

  • PDF

Heat Transfer Analysis above L$N_2$ Surface in HTS Transformer (HTS변압기에서 액체질소 표면 상부의 열전달 해석)

  • ;;Steven W. Van Sciver
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.174-177
    • /
    • 2003
  • Cooling load from the top plate to L$N_2$ surface, including wall conduction, gas conduction, radiation, and current leads, is investigated in a closed cooling system for HTS transformer. In general methods of load calculation, individual load is estimated separately, but they are actually coupled each other because of natural convection of nitrogen vapor. Using heat transfer analysis, we calculate cooling load with taking into account the effect of natural convection. Cooling load is under- estimated approximately 2 % when the natural convection is ignored. If the operating current is high, there will be a wide difference between actual cooling load and cooling load by individual calculation. Cooling load decreases with increasing number of radiation shield. With production, construction, and cooling load, three radiation shields are proper to 1 MVA HTS transformer.

  • PDF

A Study for the Output Increament of the Hydrogen Gas Turbine with Water Injection (물분사 수소 가스터빈의 출력 향상을 위한 연구)

  • Jung, K.S.;Oh, B.S.
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • Most of today's energy supply is obtained from fossil fuels. Despite of high energy density, higher store efficiency and long mileage, fossil fuels cause environmental pollution and their reserves are limited. In this study pure hydrogen gas and oxygen gas are burned without the emission of pollution. A gas turbine is used to obtain power. Water is injected into a combustor, which prevents overheating and recovers cooling heat. Excessively supplied water is recirculated. With variation of mass flow rate and equivalence ratio, the affection of water injection rate and the temperature of injected water on efficiency and power are experimented. Injected water gets cooling heat, is expanded from liquid to vapor and raises the thermal efficiency. It is enable to determine the rate of water injection, which makes the maximum power. The increase of temperature of water injection raises the efficiency of the system.

  • PDF

Impact of Residential CHP Systems on Greenhouse Gas Emissions in Korea (가정용 열병합 시스템의 국내 도입에 따른 온실가스 저감효과 예측)

  • Kang, Byung Ha;Yun, Chang Ho;Ahn, Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.10
    • /
    • pp.555-561
    • /
    • 2013
  • The effects of applying the micro CHP system to the domestic sector in Korea were investigated using annual cooling and heating demand data. Four prime movers, micro gas turbine, PEMFC, gas engine and Stirling engine, were compared for three operational modes. Two way buy-back was assumed for both electricity and heat. The Stirling engine gave the lowest $CO_2$ emission per energy for 300kWh monthly electricity production. However, PEMFC became more effective when considering PURPA criteria. PEMFC generated the least greenhouse gas with higher electrical efficiency for cooling. The Stirling engine, however, became competitive for heating with higher total efficiency.