• Title/Summary/Keyword: Gas condensation

Search Result 230, Processing Time 0.026 seconds

Self-repairing Technology by Electrophoresis of Ni Nano-Particles for Heat Exchanger Tubes (Ni 나노입자의 전기영동 코팅에 의한 전열관 자가보수 기술 개발)

  • Lee, Gyoung-Ja;Lee, Min-Ku;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.238-244
    • /
    • 2007
  • The electrophoretic deposition process of Ni nano-particles in organic suspension was employed for self-repairing of heat exchanger tubes. For this purpose, Ni nano-particles prepared by levitational gas condensation method were dispersed into the solution of ethanol with the addition of dispersant Hypermer KD2. For electrophoretic deposition of Ni nano-particles on the Ni alloy specimen, constant electric fields of 20 and 100 V $cm^{-1}$ were applied to the specimen in Ni-dispersed solution. It was found that as electrophoretic deposition proceeds, the size of the pit or crack remarkably decreased due to the agglomeration of Ni nano-particles at the pit or crack. This strongly suggests that the electrophoretic mobility of the charged particles is larger for the damaged part with a higher current value rather than outer surfaces with a lower current value.

Effect of fluorine gas addition for improvement of surface wear property of DLC thin film deposited by using PECVD (PECVD를 이용한 DLC 박막의 표면 마모 특성 향상을 위한 플루오린 첨가의 영향)

  • Park, Hyun-Jun;Kim, Jun-Hyung;Moon, Kyoung-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.357-364
    • /
    • 2021
  • In this study, DLC films deposited by PECVD were evaluated to the properties of super-hydrophobic by CF4 treatment. The structure of DLC films were confirmed by Raman Spectra whether or not mixed sp3 (like diamond) peak and sp2 (like graphite) peak. And the hydrogen contents in the DLC films (F-DLC) were measured by RBS analysis. In addition, DLC films were analyzed by scratch test for adhesion, nano-indentation for hardness and tribo-meter of Ball-on-disc type for friction coefficient. In the result of analysis, DLC films had traditional structure regardless of variation of hardness at constant conditions. Also adhesion of DLC film was increased as higher material hardness. Otherwise, friction coefficient was increased as lower material hardness. The DLC films were treated by CF4 plasma treatment to enhance the properties of super-hydrophobic. And the DLC films were measured by ESEM(Enviromental Scanning Electron Microscope) for water condensation.

The Chemical Composition of HD47536: A Planetary Host Halo Giant with Possible 𝛌 Bootis Features and Signs of Interstellar Matter Accretion

  • Yushchenko, Alexander;Doikov, Dmytry;Andrievsky, Sergei;Jeong, Yeuncheol;Yushchenko, Volodymyr;Rittipruk, Pakakaew;Kovtyukh, Valery;Demessinova, Aizat;Gopka, Vira;Raikov, Alexander;Jeong, Kyung Sook
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.169-180
    • /
    • 2022
  • We investigated the chemical composition of the planetary host halo star HD47536 via high-resolution spectral observations recorded using a 1.5 meter Cerro Tololo Inter-American Observatory (CTIO) telescope (Chile). Furthermore, we determined the abundances of 38 chemical elements. Both light and heavy elements were overabundant compared to the iron group elements. The abundance pattern of HD47536 was similar to that of halo-type stars, with an enrichment of heavy elements. We analyzed the relationships between the relative abundances of chemical elements and their second ionization potentials and condensation temperatures. We demonstrated that the interplay of charge-exchange reactions owing to the accretion of interstellar matter and the gas-dust separation mechanism can influence the initial abundances and can be used to qualitatively explain the abundance patterns in the atmosphere of HD47536.

Products and pollutants of half dried sewage sludge and waste plastic co-pyrolysis in a pilot-scale continuous reactor (반 건조 하수슬러지와 폐플라스틱 혼합물의 파일롯 규모 연속식 열분해에 의한 생산물과 발생 오염물질)

  • Kim, YongHwa;Chun, Seung-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.327-337
    • /
    • 2017
  • A continuous low temperature ($510^{\circ}C{\sim}530^{\circ}C$) pyrolysis experiment in a pilot-scale of 85.3 kg/hr was carried out by the mixed feedstock of half dried digested sewage sludge and waste plastics. As a result, the amount of pyrolysis gas generated was maximum 68.3% of input dry mass and scored $40.9MJ/Nm^3$ of lower heating value (LHV), and the percentage of air inflow caused by continuous pyrolysis was 19.6%. The oil was produced 4.2% of the input dry mass, and the LHV was 32.5 MJ/kg. The sulfur and chlorine contents, which could cause corrosion of the facility, were found to be 0.2% or more respectively. The carbide generated was 27.5% of the input dry mass which shows LHV of 10.2 MJ/kg, and did not fall under designated waste from the elution test. The concentration of carbon monoxide, sulfur oxides and hydrogen cyanide of emitted flu gas from pyrolysis gas combustion was especially high, and dioxin (PCDDs/DFs) was within the legal standards as $0.034ng-TEQ/Sm^3$. Among the 47 water pollutant contents of waste water generated from dry flue gas condensation, several contents such as total nitrogen, n-H extract and cyanide showed high concentration. Therefore, the merge treatment in the sewage treatment plants after pre-treatment could be considered.

Permeation Behavior of Olefin/Nitrogen Gases through Siloxane based Polymeric Membranes (실록산계 고분자 막을 통한 올레핀/질소 기체 투과 거동)

  • 이수복;신효진;최승학;김정훈;박인준;노재성;강득주
    • Membrane Journal
    • /
    • v.13 no.4
    • /
    • pp.246-256
    • /
    • 2003
  • For the olefin recovery from polyolefin off-gas, the permeation behaviors of olefins and nitrogen were investigated through three kinds of PDMS membranes - cross-linked PDMS membranes, a polysiloxaneimide membrane, and oligo-PDMS modified PDMS membranes. Their pure gas permeabilities were measured as a function of operation temperature(-20 to $50^{\circ}C$) and pressure(1 to 25 atm) with ethylene($C_2\;H_4$), propylene($C_3\;H_6$), butylene($C_4\;H_8$), and nitrogen($N_2$) gases. The permeabilities of olefins and nitrogen highly depended upon the nature of PDMS membranes. Among these membranes, cross-linked PDMS membranes showed stable and high olefin/nitrogen selectivities over a wide operation pressure range and further study in various test conditions. Their permeability of olefin and nitrogen were governed by the condensation temperature(solubility selectivity) and plasticization, not the order of the size(diffusivity selectivity) of gases, which matched well with the general permeation behavior of rubbery polymeric membranes for condensable and non-condensable gases. With increasing feed pressure or decreasing feed temperature, the permeabilities of more condensible olefins increase highly, presumably due to high solubility and plasticization, but that of non-condensible nitrogen decreases slightly and thus, the selectivities of olefin/nitrogen increase highly.

Design of Naphtha Cracker Gas Splitter Process in Petlyuk Column (납사열분해 가스분리공정에서의 Petlyuk Column 설계)

  • Lee, Ju Yeong
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.17-22
    • /
    • 2020
  • Light Naphtha is distillated from crude oil unit and separated into the methane, ethylene and propylene by boiling point difference in sequence. This separation is conducted using a series of binary-like columns. This separation method is known that the energy consumed in the reboiler is used to separate the heaviest components and most of this energy is discarded as vapor condensation in the overhead cooler. In this study, the first two columns of the separation process are replaced with the Petlyuk column. A structural design was exercised by the stage computation with ideal tray efficiency in equilibrium condition. Compared with the performance of a conventional system of 3-column model, The design outcome shows that the procedure is simple and efficient because the composition of the liquid component in the column tray was designed to be similar to the equilibrium distillation curve. The performance of the new process indicates that an energy saving of 12.1% is obtained and the cost savings of 44 million won per day based on gross domestic product is reduced under same total number of trays and the initial investment cost is saved.

Preparation and Characterization of Pitch based Coke with Anisotropic Microstructure Derived from Pyrolysis Fuel Oil (열분해유 유래 피치로부터 이방성 미세구조 코크스 제조 및 특성 평가)

  • Cho, Jong Hoon;Kim, Ji Hong;Lee, Young-Seak;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.640-646
    • /
    • 2021
  • In this study, pitch was synthesized using pyrolysis fuel oil (PFO). Coke with mesophase microstructure was then prepared from the synthesized pitch and its properties were evaluated. Pitch was synthesized by poly-condensation reaction, which is an endothermic reaction at a temperature above 400 ℃ because the PFO was mainly composed of molecules with two to three aromatic rings. The Coke reactor was composed of the pretreatment reactor, preheater for applying heat energy, and coke drum for inducing microstructure of coke. Coke was prepared from synthesized pitch by controlling the temperature of the preheater to 400~490 ℃, and properties were evaluated by polarization microscope, XRD and Raman spectroscopy. The coke prepared at a preheater temperature of 460 ℃ identified flow anisotropic microstructure, and the electrical conductivity was 72.0 S/cm due to high crystallinity. And the flow anisotropic coke showed approximately 2.2 times higher electrical conductivity than that of Super-P, a conductive carbon material.

Reaction Characteristics of Water Gas Shift Catalysts in Various Operation Conditions of Blue Hydrogen Production Using Petroleum Cokes (석유코크스 활용 블루수소생산을 위한 Water Gas Shift 촉매의 조업조건에 따른 반응특성)

  • Park, Ji Hye;Hong, Min Woo;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • To confirm the applicability of the water gas shift reaction for the production of high purity hydrogen for petroleum cokes, an unutilized low grade resource, Cu/ZnO/MgO/Al2O3 (CZMA), catalyst was prepared using the co-precipitation method. The prepared catalyst was analyzed using BET and H2-TPR. Catalyst reactivity tests were compared and analyzed in two cases: a single LTS reaction from syngas containing a high concentration of CO, and an LTS reaction immediately after the syngas passed through a HTS reaction without condensation of steam. Reaction characteristics in accordance with steam/CO ratio, flow rate, and temperature were confirmed under both conditions. When the converted low concentration of CO and steam were immediately injected into the LTS, the CO conversion was rather low in most conditions despite the presence of large amounts of steam. In addition, because the influence of the steam/CO ratio, temperature, and flow rate was significant, additional analysis was required to determine the optimal operating conditions. Meanwhile, carbon deposition or activity degradation of the catalyst did not appear under high CO concentration, and high CO conversion was exhibited in most cases. In conclusion, it was confirmed that when the Cu/ZnO/MgO/Al2O3 catalyst and the appropriate operating conditions were applied to the syngas composition containing a high concentration of CO, the high concentration of CO could be converted in sufficient amounts into CO2 by applying a single LTS reaction.

A Study on the Improvement of the Electrochemical Performance of Graphite Anode by Controlling Properties of the Coating Pitch (코팅 피치의 물성제어를 통한 흑연 음극재의 전기화학 성능 향상 연구)

  • Kim, Bo Ra;Kim, Ji Hong;Kang, Seok Chang;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.459-465
    • /
    • 2022
  • A pitch coating method was proposed for the purpose of improving the electrochemical properties of natural graphite. The synthesis conditions of pitch coating were optimized via measuring electrochemical properties of pitch-coated graphite anodes. As the synthesis temperature increased, the thermal stability was improved in addition to an increase in the softening point and residual carbon weight. However, the synthesis temperature of 430 ℃ resulted in the synthesis of a large amount of NI (NMP Insoluble) due to excessive condensation reaction. As the surface uniformity and coating thickness increased due to high thermal stability, the initial coulombic efficiency and rate capability of the pitch-coated graphite were improved. However, the graphite coated with the pitch containing excessive NI showed lower electrochemical properties than the uncoated graphite. NI had low dispersibility and formed spheres after heat treatment, so it formed the heterogeneous and thicker SEI layer. The optimum conditions for forming a uniform surface and an appropriate coating layer were investigated.

Deep Learning-based Object Detection of Panels Door Open in Underground Utility Tunnel (딥러닝 기반 지하공동구 제어반 문열림 인식)

  • Gyunghwan Kim;Jieun Kim;Woosug Jung
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.665-672
    • /
    • 2023
  • Purpose: Underground utility tunnel is facility that is jointly house infrastructure such as electricity, water and gas in city, causing condensation problems due to lack of airflow. This paper aims to prevent electricity leakage fires caused by condensation by detecting whether the control panel door in the underground utility tunnel is open using a deep learning model. Method: YOLO, a deep learning object recognition model, is trained to recognize the opening and closing of the control panel door using video data taken by a robot patrolling the underground utility tunnel. To improve the recognition rate, image augmentation is used. Result: Among the image enhancement techniques, we compared the performance of the YOLO model trained using mosaic with that of the YOLO model without mosaic, and found that the mosaic technique performed better. The mAP for all classes were 0.994, which is high evaluation result. Conclusion: It was able to detect the control panel even when there were lights off or other objects in the underground cavity. This allows you to effectively manage the underground utility tunnel and prevent disasters.