• Title/Summary/Keyword: Gas condensation

Search Result 230, Processing Time 0.023 seconds

A study on the development of the high efficiency condensing heat exchanger (고효율 응축형 열교환기 개발에 관한 연구)

  • Lee, Geum-Bae;Park, Sang-Il;Park, Jun-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.589-601
    • /
    • 1997
  • A computer simulation program of a high efficiency condensing heat exchanger is developed. The flue gas flows outside bare tube bundles both in strong cross flow and in weak counter flow and the cooling water inside the tubes. Condensing heat exchangers achieve high efficiency by reducing flue-gas temperatures to a level at which most of the water vapor in the flue gas is condensed and the latent heat associated with phase change of the water is recovered. The computer model has been verified by comparison with measured data. To verify the model, heat transfer coefficient was adjusted, along with the mass transfer diffusion coefficient and pressure drop coefficient, to achieve agreement between predicted and measured data. The efficiencies of heat exchanger increase 2.3 ~ 8.1% by condensations of 6.3 ~ 62.6% of the water vapor in the flue gas.

Evaluation of Oxidation Ozone for Superconductor Thin Film Growth (초전도 박막 제작을 위한 산화 오존의 평가)

  • Lim, Jung-Kwan;Park, Yong-Pil;Lee, Hee-Kab
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.35-38
    • /
    • 2004
  • Ozone is useful oxidizing gas for the fabrication of oxide thin films. Accordingly researching on oxidizing gas is required. In order to obtain high quality oxide thin films, higher ozone concentration is necessary. In this paper oxidation property was evaluated relation between oxide gas pressure and inverse temperature(CuO reaction). The obtained condition was formulated by the fabrication of Cu metal thin film by co-deposition using the Ion Beam Sputtering method. Because the CuO phase peak appeared at the XRD evaluation of the CuO thin film using ozone gas, this study has succeeded in the fabrication of the CuO phase at $825^{\circ}C$.

  • PDF

Characteristics of Unipolar Charging of the Submicron Particles by the Condensation-Evaporation Method (응축 증발법을 통한 서브마이크론 입자의 단극하전 특성)

  • Choi, Young-Joo;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.186-192
    • /
    • 2006
  • We applied a new charging system using the condensation and evaporation method to charge the submicron particles with a uniform charging performance. The monodispersed NaCl submicron particles were condensed by n-butanol vapor and grew up to micron droplets with a same size, regardless of their initial size. Those condensed droplets were charged in an indirect corona charger. The indirect corona charger consisted of the ion generation zone and the particle charging zone. In the ion generation zone, Ions were generated by corona discharge and some of them moved into the particle charging zone by a carrier gas and mixed with the condensed droplet. And finally, the charged and condensed droplets dried through an evaporator to shrink to their original size. The average charge and penetration rate of the particles before and after evaporation were measured by CPC and aerosol electrometer and compared with those of a conventional corona charger. The results showed that the average charge was $5\~7$ charges and the penetration rate was over $90\%$, regardless of the initial particle size.

Morphological control and electrostatic deposition of silver nanoparticles produced by condensation-evaporation method (증발-응축법에 의해 발생된 은(silver) 나노입자의 구조제어 및 전기적 부착 특성 연구)

  • Kim, Whidong;Ahn, Ji Young;Kim, Soo Hyung
    • Particle and aerosol research
    • /
    • v.5 no.2
    • /
    • pp.83-90
    • /
    • 2009
  • This paper describes a condensation-evaporation method (CEM) to produce size-controlled spherical silver nanoparticles by perturbing coagulation and coalescence processes in the gas phase. Polydisperse silver nanoparticles generated by the CEM were first introduced into a differential mobility analyzer (DMA) to select a group of silver nanoparticles with same electrical mobility, which also enables to make a group of nanoparticles with elongated structures and same projected area. These silver nanoparticles selected by the DMA were then in-situ sintered at ${\sim}600^{\circ}C$, and then they were observed to turn into spherical shaped nanoparticles by the rapid coalescence process. With the assistance of modified converging-typed quartz reactor, we can also produce the 10 times higher number concentration of silver nanoparticles compared with a general quartz reactor with uniform diameter. Finally, the spherical silver nanoparticles with 30 nm were electrostatically deposited on the surface of silicon substrate with the coverage rate of ~4%/hr. This useful preparation method of size-controlled monodisperse silver nanoparticles developed in this work can be applied to the various studies for characterizing the physical, chemical, optical, and biological properties of nanoparticles as a function of their size.

  • PDF

Fabrication of Iron-Molybdenum Alloyed Nanoparticle and Nanowire using Chemical Vapor Condensation(CVC) (화학적 기상 응축(CVC)법을 이용한 철-몰리브덴합금 나노 입자와 와이어의 제조)

  • Ha, Jong-Keun;Cho, Kwon-Koo;Kim, Ki-Won;Ryu, Kwang-Sun
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.223-229
    • /
    • 2010
  • Iron(Fe)-Molybdenum(Mo) alloyed nanoparticles and nanowires were produced by the chemical vapor condensation(CVC) process using the pyrolysis of iron pentacarbonyl($Fe(CO)_5$) and Molybdenum hexacarbonyl($Mo(CO)_6$). The influence of CVC parameter on the formation of nanoparticle, nanowire and size control was studied. The size of Fe-Mo alloyed nanoparticles can be controlled by quantity of gas flow. Also, Fe-Mo alloyed nanowires were produced by control of the work chamber pressure. Moreover, we investigated close correlation of size and morphology of Fe-Mo nanoparticles and nanowires with atomic quantity of inflow precursor into the electric furnace as the quantitative analysis. Obtained nanoparticles and nanowires were investigated by field emission scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction.

An Experimental Study of Underexpanded Moist Air Jet Impinging on a Flat Plate

  • Lee, D.W.;S.C. Baek;S.B. Kwon;Kim, H.D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.768-773
    • /
    • 2004
  • When a gas expands through a convergent nozzle in which the ratio of the ambient to the stagnation pressures is higher than that of the critical one, the issuing jet from the nozzle is underexpanded. If a flat plate is placed normal to the jet at a certain distance from the nozzle, a detached shock wave is formed at a region between the nozzle exit and the plate. In general, supersonic moist air jet technologies with nonequilibrium condensation are very often applied to industrial manufacturing processes. In spite of the importance in major characteristics of the supersonic moist air jets impinging to a solid body, its qualitative characteristics can not even know. In the present study, the effect of the nonequilibrium condensation on the underexpanded moist air jet impinging on a vertical flat plate is investigated experimentally. Flow visualization and impact pressure measurement are performed for various relative humidities and flat plate positions. The obtained results show the plate shock and Mach disk are dependent on the nozzle pressure ratio and the relative humidity, but for a given nozzle pressure ratio, the diameters of the plate shock and Mach disk depend on the stagnation relative humidity. The impact pressure deviation from the flow of without condensation is large, as the relative stagnation humidity increases.

  • PDF

A Study on the Condensation Performance for the Horizontal Heat Transfer Tubes with Various Fin Attached (형상이 다른 수평 원형 전열관의 응축 성능에 관한 연구)

  • Han, Kyu-Il;Park, Jong-Un
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.4 no.1
    • /
    • pp.47-61
    • /
    • 1992
  • An experimental study was carried out to investigate the condensation performance for the horizontal cylindrical heat transfer tube with various fin attached using R-11 vapor. The heat transfer tube used in this study was supplied by SUNG HYUNG METAL CO., LTD. Four different types of heat transfer tubes (plain tube, SH-CYR tube, thermocor tube and thermoexcel tube) were used. Each tube was surrounded by circular acrylate tube, and R-11 gas heated by boiler flows into the acrylate tube. Cooling water counter-flows in heat transfer tubes. Heat transfer coefficient of the plain tube from measured data was compared with those of three other tubes. The results are summarized as follows: 1. As the cooling water temperature decreased, the liquid film of R-11 turned to droplet drop on the top surface of the horizontal tube. 2. Heat transfer coefficient calculated theoretically was higher than that obtained from the experimental data. 3. As far as the condensation concerns the thermocor tube is the highest, the SH-CYR tube is the second, and the thermoexcel tube is the third excluding the plain tube.

  • PDF

Comparing Exhaust Gas Emission and PN in LPG and CNG Vehicle under FTP-75 and WLTC Test Mode (FTP-75, WLTC 시험 모드에서 LPG, CNG 자동차의 배출가스 및 PN 비교)

  • Jang, Jinyoung;Lee, Youngjae;Kwon, Ohseok;Kim, Jeonghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.9-15
    • /
    • 2016
  • Liquefied petroleum gas (LPG) and compressed natural gas (CNG) are often used as fuel for vehicles because they are clean alternative gas fuels. CNG, as a low-carbon fuel, can contribute to the reduction of greenhouse gas emissions. LPG is often used as fuel for taxis because the performance is almost the same as that of gasoline but the price is lower. In the present study, the exhaust gas and the particle number (PN) of particulate matter, which is a recent environmental issue, were compared between LPG and CNG for the same vehicle. A chassis dynamometer was used to conduct the test according to the Federal Test Procedure (FTP)-75 and Worldwide harmonized Light-duty vehicle Test Procedure (WLTC) modes. The PN values of discharged particles having sizes of 5 nm or larger and 23 nm or larger were measured using two condensation particle counters (CPC). The ratio of carbon dioxide was high in the exhaust gas from the LPG vehicle; the ratio of methane was high in the exhaust gas from the CNG vehicle. The PN values of the emitted particles from the two fuels were similar. The PN values of particles having sizes of 23 nm or smaller were high in the high-speed WLTC mode.

Magnetic Properties and Application of Caltalysts in Biginelli Reaction for the Ni and Ni@C Synthesized by Levitational Gas Condensation (LGC) (부양증발응축법으로 제조된 Ni과 Ni@C의 자성특성 및 Biginelli 합성 촉매 적용연구)

  • Uhm, Young Rang
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.3
    • /
    • pp.87-91
    • /
    • 2017
  • Carbon-encapsulated Ni and metal Ni nanoparticles were synthesized by levitational gas condensation (LGC). Methane ($CH_4$) gas was used to coat the surface of the Ni nanoparticles. The Ni particles had a core diameter of 10 nm, and were covered by 2~3 nm thin carbon layers with multi-shells structure.The low magnetization comparing with the Ni nanoparticles without carbon-shell results in the coexistence of nonmagnetic carbon and a large surface spin percentage with disordered magnetization orientation for the nanoparticles. Biginelli reactions in the presence of L-proline and Ni and carbon encapsulated Ni nanoparticles were carried out to change the ratio between stereoisomers. The obtained S-enantiomers for 3,4-dihydropyrimidine (DHPM) using catalysts of Ni, and Ni@C was an excess of about ${\Delta}{\sim}7.4%$ and ${\Delta}{\sim}19.6%$, respectively. The nanopowders were fully recovered using magnet to reuse as a catalyst. The Ni@C was shown at same yield to formation of 3,4-DHPM, though it was recycled for catalyst in the reaction.

Concentration and Seasonal Variation of Particle PCBs in Air

  • Yeo Hyun-Gu;Chun Man-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E1
    • /
    • pp.13-21
    • /
    • 2005
  • Atmospheric concentrations of PCBs were monitored in Ansung-city, Kyonggi province during the 2001/2002 to characterize the concentration distribution and seasonal variation of particle polychlorinated biphenyls (PCBs). Average concentration of particle bound PCB showed maximum value for penta-CBs and minimum value for octa-CBs. Seasonal contributions $(%\)$ of total particle PCBs showed the highest value in winter months and lowest value in summer month, This result indicated that concentration of total particle PCBs increased with decreasing temperature in the atmosphere. Therefore, particle PCBs were easily formed by the condensation of gas phase PCBs in winter months. The total particle PCBs exhibited an inverse correlation with temperature (p<0.01) which suggested that particle PCBs were easily formed by condensation of gaseous PCBs in winter months.