• Title/Summary/Keyword: Gas burning

Search Result 369, Processing Time 0.026 seconds

An experimental study on the burning velocity measurement of natural gas (천연가스의 연소속도 측정에 관한 실험적 연구)

  • Yu, Hyeon-Seok;Han, Jeong-Ok;Bang, Hyo-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.195-201
    • /
    • 1997
  • Static and non-static flame methods were used to measure the laminar burning velocity of methane, ethane and natural gas. The flame slot angle and velocity of unburned gas mixture were determined by Schlieren method and LDV, respectively, for static flame. The diameter of nozzle was selected as 11 mm. The experimental results containing the stretch effect showed that the maximum burning velocities were 41.5 for natural gas, 40.8 for methane and 43.4 cm/sec for ethane on equivalence ratio of 1.1. Constant volume combustion chamber was also used for non-static flame. The propagation process of flame front was visualized by high speed camera during constant pressure. The maximum burning velocity of natural gas was determined as 42.1 cm/sec on equivalence ratio of 1.15.

An Investigation of the Fundamental Combustion Characteristics for the Utilization of LFG (LFG 활용을 위한 기초 연소특성 검토)

  • Lee, Chang-Eon;Oh, Chang-Bo;Kum, Sung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.99-108
    • /
    • 2004
  • Fundamental combustion characteristics, such as the combustion potential, burning velocity and flame stability, for the practical utilization of LFG(Landfill gas) and LFG-blended fuels were experimentally investigated. The combustion potentials(CP) of LFG-blended fuels calculated from the previously suggested formulae were compared with burning velocities obtained by present experiments. The results showed that the previous formulae fur CP of LFG-blended fuels were not agreed with the experimental burning velocity, and these formulae should be revised. To provide an useful information needed to design the combustion devices, a triangular diagram was suggested for the maximum burning velocity of the mixture of CH$_4$, LPG and LFG. From the investigation of the burning velocity and the flame stability in a practical combustor, it was noted that the LFG-blended fuels, of which heating values or Wobbe indices were adjusted to that of natural gas, could be used as an alternative fuel of natural gas.

Stabilization of Fuel F1ow in a Multi-Nozzle Combustion System Burning Natural Gas (천연가스 다노즐 열원설비의 연료 유동 안정화)

  • 박의철;차동진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1255-1265
    • /
    • 2001
  • A numerical study has been conducted to characterize the transient flow in a utility gas turbine burning natural gas. The solution domain encompasses the supply gas pressure regulator to the combustor of the gas turbine that employs multi-nozzle fuel injectors. Some results produced for verification in the present study agree suite well with the experimental ones. It is found that the total gas flow may decrease noticeably during its combustion mode change, which would be the reason of momentary combustion upset, when a reference case of opening ratios of control valves in the system is applied. Several parameters are then varied in order to make the total gas flow stable over that period of time. Results of this study may be useful to understand the unsteady behavior of combustion system burning natural gas.

  • PDF

On the effect of filters for the design of solid propellant gas generators (고체추진제 가스발생기 설계를 위한 필터 효과에 대한 고찰)

  • Hong, Moon-Geun;Lee, Soo-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2524-2527
    • /
    • 2007
  • Solid propellant gas generators (SPGG) play a role as a turbopump starter in liquid propellant propulsion systems by supplying pressurized gas to power turbines for engine start. For such a purpose, the propellants should burn with a relative low flame temperature and the combustion gas should not contain corrosive constituents such as chlorine compounds. In accordance with these requirements, stabilized AN-based propellants have been usually used as the most appropriate oxidizer for propellant compositions. However, the burning area of the propellant intends to increase to satisfy the required mass flux because of its low burning rate. Consequently the burning area incensement brings on the SPGG size augmentation. A flow restriction such as filters is applied to decrease the SPGG size by rising up the combustion pressure resulting in increasing the burning rate. The feasibility of the size reduction of SPGG by the employment of filters have been studied. The preliminary results of this study show that the considerable reduction of SPGG size would be achievable just by installing a filter with relatively high pressure loss coefficient.

  • PDF

A Study on Improvement of Safety Standards for Commercial Gas Burning Appliances (업무용대형연소기 안전기준 개선방안 연구)

  • Choi, Suel-Ki;Ahn, Hyun-Soo;Lee, Chang-Eon;Kim, Young-Gu
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.309-310
    • /
    • 2014
  • Commercial gas burning appliances are classified by KGS AB338. Even though there are many types of gas appliances with different purposes and uses, common standards are applied to the appliances. Manifold of commercial gas range could often be corroded by salt water. Gas leaks and accidents could be occurred by the corrosion. According to suggestion of detailed material standards for manifold of commercial gas range, it could help to use safely and prevent gas accidents.

  • PDF

Development of a Ejection Gas Generator for Precluding Erosive Burning by Using Bundle Cylindrical Grains (침식연소가 방지되는 사출용 다발 원통형 그레인 가스발생기 개발)

  • Oh, Seok-Jin;Cha, Hong-Seok;Jang, Seung-Gyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.69-76
    • /
    • 2012
  • An achieving method of highly progressive pressure gradient is presented to enhance the missile ejection system's performance by using a gas generator in the condition of preventing erosive burning. To obtain and confirm a stable burning, a ground burning test was performed to evaluate the new methods of a radial-hole and a multi-row propellant grain. The test results show that a radial-hole grain takes good effect on erosive burning and not on ejection performance. On the other hand, a multi-row grain which reduces the length-to-diameter ratio(L/D) of grain is very effective to prevent the erosive burning and to enhance the ejection performance simultaneously.

Development of a Ejection Gas Generator for precluding Erosive Burning by using Bundle Cylindrical Grains (침식연소가 방지되는 사출용 다발 원통형 그레인 가스발생기 개발)

  • Oh, Seok-Jin;Cha, Hong-Seok;Jang, Seung-Gyo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.432-439
    • /
    • 2011
  • An achieving method of highly progressive pressure gradient is presented to enhance the missile ejection system's performance by using a gas generator in the condition of preventing erosive burning. To obtain and confirm a stable burning, a ground burning test was performed to evaluate the new methods of a radial-hole and a multi-row propellant grain. The test results show that a radial-hole grain takes good effect on erosive burning and not on ejection performance. On the other hand, a multi-row grain which reduces the legnth-to-diameter ratio(L/D) of grain is very effective to prevent the erosive burning and to enhance the ejection performance simultaneously.

  • PDF

Preliminary Study of Gas Generator After Burning Cycle Engine for Upper Stages (상단용 가스발생기 후연소 싸이클 엔진 기초연구)

  • Moon, In-Sang;Shin, Ji-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.159-162
    • /
    • 2008
  • In this study, various cycles of liquid rocket engines were surveyed and specifically gas generator after burning cycle was investigated for upper stage motors. The engines for the upper stage can be categorized into three group based on the cycles and propellants at the diagram. Kerosene engines which adapt the gas generator after burning cycle and are located in the region II, are characterized for high combustion pressure and complexity. This cycle usually needs more than two pumps to use the turbine power efficiently. The fuel line can be divided into the gas generator line and the combustor line, and only the gas generator line is need to be pressured more because the combustion pressure in the gas generator is much higher than that of the combustor. Basically, all the oxidizer goes into the gas generator and than to the combustor, thus the auxiliary LOx pump is not critically necessary. However, for the various reasons, the LOx line requires a booster pump. A gas generator after burning cycle engines produces relatively high specific impuls than that of the open cycle engines. Thus it is suitable for upper stages of launch vehicles.

  • PDF

Thermal Stress Anaysis of Burning Plate by Configuration of Outdoor Gas Boiler (야외용 가스보일러의 연소판 형상에 따른 열응력 해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.48-54
    • /
    • 2015
  • This study investigates the result of thermal stress analysis on burning plate by classes at outdoor gas boiler. In the analysis results at the steady state, the maximum stress and deformations are 666,8MPa at A type and 0.20476mm at B type respectively. The deformation becomes larger as the field goes on from the center to the outside at burning plate. As there are 8 types in the order of maximum stress and deformation, F and C type have safest among 8 types respectively. Therefore, F type becomes most excellent on strength and safety among 8 types. By using the analysis result of burning plate model at gas boiler, it is possible to design the model applied practically at the safe component parameters of boiler system.

Development of Combustor for Combustible Hazardous Gas (가연성 유해가스 처리를 위한 연소기 개발)

  • 전영남;채종성;김미환
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.479-485
    • /
    • 1996
  • Volatile organic compounds are air pollutants exhausting from industrial process, evaporation of solvent, and so on. Most of VOCs are the combustible gas of low calorific value as it is diluted by air. The systems burning such a hazardous gas need to increase enthalpy in order to increase flame stability. In this study an incinerator with reciprocating flow in the honeycomb ceramic has been used for the experiment of VOCs control. By the reciprocating flow system, the enthalpy of combustion gas is effectively regenerated into the enthalpy increases of the combustible gas through the honeycomb ceramic, which provides a heat storage. The position of the reaction zone is strongly dependent on the parameters of mixture velocity and time frequency. Flame front is changed to the point where burning velocity is coincided with burning velocity in the honeycomb ceramic. In this system it is important that flame front should be located symmetrically at the center of honeycomb ceramic for the purpose of increasing the reaction rate at one point. Peak temperature becomes higher with decreasing time frequency, at which the flow direction is regularly reversed.

  • PDF