• Title/Summary/Keyword: Gas boundary

Search Result 642, Processing Time 0.023 seconds

The Flow Instability Over the Infinite Rotating Disk

  • Lee, Yun-Yong;Hwang, Young-Kyu;Lee, Kwang-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1388-1396
    • /
    • 2003
  • The hydrodynamic instability of the three-dimensional boundary layer on a rotating disk introduces a periodic modulation of the mean flow in the form of stationary cross flow vortices. The instability labeled Type II by Faller occurs first at lower Reynolds number than that of well known Type I instability. Detailed numerical values of the amplification rates, neutral curves and other characteristics of the two instabilities have been calculated over a wide range of parameters. Presented are the neutral stability results concerning the two instability modes by solving the appropriate linear stability equations reformulated not only by considering whole convective terms but also by correcting some errors in the previous stability equations. The present stability results agree with the previously known ones within reasonable limit. Consequently, the flow is found to be always stable for a disturbance whose dimensionless wave number is greater than 0.75. Some spatial amplification contours have been computed for the stationary disturbance wave, whose azimuth angle $\varepsilon$= 11.29$^{\circ}$ to 15$^{\circ}$ and for the moving disturbance wave, whose azimuth angle $\varepsilon$ = 12.5$^{\circ}$ to 15$^{\circ}$. Also, some temporal amplification contours have been computed for the stationary disturbance wave, whose azimuth angle $\varepsilon$= 11.29$^{\circ}$ to 15$^{\circ}$ and for the moving disturbance wave, whose azimuth angle $\varepsilon$= 12$^{\circ}$ to 15$^{\circ}$. The flow instability was observed by using a white titanium tetrachloride gas over rotating disk system. When the numerical results are compared to the present experimental data, the numerical results agree quantitatively, indicating the existence of the selective frequency mechanism.

Possible Changes of East Asian Summer Monsoon by Time Slice Experiment (Time Slice 실험으로 모의한 동아시아 여름몬순의 변화)

  • Moon, JaYeon;Kim, Moon-Hyun;Choi, Da-Hee;Boo, Kyung-On;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.18 no.1
    • /
    • pp.55-70
    • /
    • 2008
  • The global time slice approach is a transient experiment using high resolution atmosphere-only model with boundary condition from the low resolution globally coupled ocean-atmosphere model. The present study employs this "time slice concept" using ECHAM4 atmosphere-only model at a horizontal resolution of T106 with the lower boundary forcing obtained from a lower-resolution (T42) greenhouse gas + aerosol forcing experiment performed using the ECHO-G/S (ECHAM4/HOPE-G) coupled model. In order to assess the impact of horizontal resolution on simulated East Asian summer monsoon climate, the differences in climate response between the time slice experiments of the present and that of IPCC SRES AR4 participating 21 models including coarser (T30) coupled model are compared. The higher resolution model from time slice experiment in the present climate show successful performance in simulating the northward migration and the location of the maximum rainfall during the rainy season over East Asia, although its rainfall amount was somewhat weak compared to the observation. Based on the present climate simulation, the possible change of East Asian summer monsoon rainfall in the future climate by the IPCC SRES A1B scenario, tends to be increased especially over the eastern part of Japan during July and September. The increase of the precipitation over this region seems to be related with the weakening of northwestern part of North Pacific High and the formation of anticyclonic flow over the south of Yangtze River in the future climate.

Variation of Microstructure and Property of the Electro-slag Remelted M2 Steel with Heat Treatment Conditions (ESR한 M2강의 열처리에 따른 미세조직 및 물성 변화)

  • Lee, Ki-Jong;Kim, Moon-Hyun;Lee, Jeong-Keun;Joo, Dae-Heon;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.22 no.6
    • /
    • pp.281-287
    • /
    • 2002
  • In order to investigate the variation of microstructure and property of the Electro-slag Remelted M2 steel, microstructure observation, hardness, and bending test were performed by using optical microscope. SEM/EDS, rockwell hardness tester, charpy impact tester and bending tester, respectively. It was revealed that the number of inclusions and content of gas elements(S, O, N) in M2 steel fabricated by ESR process decreased markedly compared to those of AIM. It seems to be due to refining effect of ESR process. The volume fraction of carbides in quenched and tempered specimens after austenitizing at 1150$^{\circ}C$ and 1240$^{\circ}C$ was measured. The volume fraction of grain boundary carbides were found to be similar for both specimens. However, The volume fraction of carbides in grain decreased with an increase of austenitizing temperature. When specimen was austenitized at 1150$^{\circ}C$, grain boundary carbides showed needle like morphology. But, the carbides were broken with an increase of austenitizing temperature. The specimen austenitized at 1240$^{\circ}C$ showed higher hardness and lower bending strength compared to that of 1150$^{\circ}C$. As expected, toughness increased with sub-zero quenching treatment.

Modeling of Highly Segmented Fluid-Driven Natural Fractures (다중으로 분할된 자연수압파쇄 균열 모델링)

  • Sim, Young-Jong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.135-141
    • /
    • 2009
  • Fracturing technique using fluid injection into the borehole is widely used technology in the industry for the geothermal heat, oil, and gas extraction. Dealing with fluid-driven natural fractures such as dike and vein indirectly, design technology would be improved by adapting their principles. In this paper, mechanical interaction between the segments is evaluated by modeling highly segmented and closely spaced fluid-driven natural fractures. The number of segments is 71 with 3,339 measured apertures in which the interaction is considerably predicted. To evaluate mechanical interaction, boundary collocation method is used and the net pressure is calculated by using least square method to fit measured apertures. As a result, in case that mechanical interaction is considered, two pressures as fitting parameters are sufficient to capture measured apertures.

  • PDF

Proton Conduction in Y2O3-doped SrZrO3 (Y2O3가 도핑된 SrZrO3에서의 프로톤전도도)

  • 백현덕
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.635-641
    • /
    • 2002
  • Electrical conduction of $SrZrO_3$ doped with $Y_2O_3$ was measured as a function of gas atmosphere and temperature by impedance spectroscopy. Hydrogen dissolution, due to an enhanced driving force in the presence of oxygen, results in protonation by water incorporation. Proton conductivity increased with water vapor pressure, ${P_w}^{1/2}$. In the pure hydrogen atmosphere, the dissolution of hydrogen,$H_2(g)=2H_{i}$ +2e', is supposed to be driven by a reduced activity of electrons, ascribable to their trapping in oxygen vacancies. The activation energy of electrical conductivity was 50 kJ/mol, in wet argon atmosphere in the temperature range of $600~900^{\circ}C$, similar to those reported for proton conduction in the literature. Grain boundary effect in proton conduction was substantial in the 10% doped case at temperatures lower than $700^{\circ}C$.

A Study on Numerical Analysis of Thermal Stress for an Monolith Ceramic Heat Exchanger (일체형 세라믹 열교환기의 전산 열응력 해석에 관한 연구)

  • Paeng, Jin-Gi;Kim, Ki-Chul;Yoon, Young-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.11
    • /
    • pp.613-620
    • /
    • 2009
  • The thermal stresses of a ceramic heat exchanger were analyzed numerically since the ceramic material is good in heat resistance but weak in the thermal stress. The analysis of thermal stress was conducted in the ceramic core with two boundary conditions depending on bolt jointing. The thermal stresses were computed by applying temperature and pressure distributions obtained from the numerical results of conjugate heat transfer to ANSYS WORKRBENCH. When number of bolt joining halls was reduced from $8\times2$ to $4\times2$, the maximum principal stresses decrease by 47.6~50.5% and increase in safety factors by 2.18~2.5 for ultimate tensile strength. Thus, it can be said that bolt joining halls should be minimized in ceramic heat exchanger to be efficient in reducing thermal stress. In addition, the width of particular gas flow passages were revised from 52 mm to 42 mm to reduce maximum thermal stresses since certain passages experienced high thermal stresses. From the revision, safety factors were increased by 13.8~14.1% for the boundary condition of $4\times2$ bolt joining halls. Therefore, it is suggested that thermal stress can be reduced by changing local geometry of a ceramic heat exchanger.

Numerical Investigation of Flows around Space Launch Vehicles at Mid-High Altitudes (중/고고도 영역에서의 우주발사체 주위 유동에 대한 수치적 연구)

  • Choi, Young Jae;Choi, Jae Hoon;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • In the present study, to investigate flows around space launch vehicles at mid-high altitudes efficiently, a three-dimensional unstructured mesh Navier-Stokes solver employing a Maxwell slip boundary condition was developed. Validation of the present flow solver was made for a blunted cone-tip configuration by comparing the results with those of the DSMC simulation and experiment. It was found that the present flow solver works well by capturing the velocity slip and the temperature jump on the solid surface more efficiently than the DSMC simulation. Flow simulations of space launch vehicles were conducted by using the flow solver. Mach number of 6 at the mid-high altitude around 86km was considered, and the flow phenomena at the mid-high altitude was discussed.

Performance Characteristics of Hypersonic External Compression Inlet Using Isentropic Compression Surface (등엔트로피 압축면을 이용한 극초음속 외부 압축형 흡입구 성능 특성)

  • Kim, Young Jin;Lee, Hyoung Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.297-308
    • /
    • 2022
  • Most air-breathing aircraft operated in the hypersonic region are equipped with a scramjet engine. In a scramjet engine, a shock wave generated at an inlet acts as a compressor for a general gas turbine engine instead, so total pressure loss caused by the shock wave is considered very important. In this study, to minimize total pressure loss, a method of designing an external compression inlet using isentropic compression surface was proposed, and an external compression inlet with 3-deflection angles and Busemann inlet were designed under the same conditions. After that, through computational analysis, the performance characteristics at off-design conditions were compared. Each inlet shape was truncated according to the length of the 3-ramp external compression inlet, and the boundary layer correction was performed. The isentropic external compression inlet showed superior performance at the design point, but under the off-design conditions, its performance was degraded compared to the 3-ramp external compression inlet.

Evaluation of Heat Resistance of Lyocell-based Carbon/Phenolic for Aerospace (항공우주용 리오셀계 탄소/페놀릭 복합재료의 내열 성능 평가)

  • Seo, Sang-Kyu;Kim, Yun-Chul;Bae, Ji-Yeul;Hahm, Hee-Chul;Hwang, Tae-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.355-363
    • /
    • 2021
  • Heat resistance performance evaluation and thermal analysis were performed to confirm the applicability of the lyocell-based carbon/phenolic composite material for heat-resistant parts for aerospace. Heat resistance performance evaluation of carbon/phenolic was conducted by Thermal Protection Evaluation Motor (TPEM). In this paper, boundary layer integration code considering the boundary layer analysis of combustion gas and MSC-Marc 2018 considering ablation and thermal pyrolysis were used for the thermal analysis. The ablation and thermal insulation performance were analyzed by the pressure curve of test motor and the cut carbon/phenolic specimens. The thermal response of the lyocell-based carbon/phenolic material was similar to that of the rayon-based carbon/phenolic material. Based on the results through the combustion test, the applicability of heat-resistant parts for aerospace to which domestic lyocell-based carbon fibers were applied was confirmed.

Numerical Analysis on the Compressible Flow Characteristics of Supersonic Jet Caused by High-Pressure Pipe Rupture Using CFD (CFD를 이용한 고압파이프 파단 시 초음속제트의 압축성유동 특성에 관한 수치해석)

  • Jung, Jong-Kil;Kim, Kwang-Chu;Yoon, Jun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.649-657
    • /
    • 2017
  • A rupture in a high-pressure pipe causes the fluid in the pipe to be discharged in the atmosphere at a high speed resulting in a supersonic jet that generates the compressible flow. This supersonic jet may display complicated and unsteady behavior in general. In this study, Computational Fluid Dynamics (CFD) analysis was performed to investigate the compressible flow generated by a supersonic jet ejected from a high-pressure pipe. A Shear Stress Transport (SST) turbulence model was selected to analyze the unsteady nature of the flow, which depends upon the various gases as well as the diameter of the pipe. In the CFD analysis, the basic boundary conditions were assumed to be as follows: pipe of diameter 10 cm, jet pressure ratio of 5, and an inlet gas temperature of 300 K. During the analysis, the behavior of the shockwave generated by a supersonic jet was observed and it was found that the blast wave was generated indirectly. The pressure wave characteristics of hydrogen gas, which possesses the smallest molecular mass, showed the shortest distance to the safety zone. There were no significant difference observed for nitrogen gas, air, and oxygen gas, which have similar molecular mass. In addition, an increase in the diameter of the pipe resulted in the ejected impact caused by the increased flow rate to become larger and the zone of jet influence to extend further.