• Title/Summary/Keyword: Gas boundary

검색결과 640건 처리시간 0.026초

CFD를 활용한 수소-천연가스 혼합연료에 대한 피해영향 분석 (Consequence Analysis of Hydrogen Blended Natural Gas(HCNG) using 3D CFD Simulation)

  • 강승규;방효중;조영도
    • 한국가스학회지
    • /
    • 제17권5호
    • /
    • pp.15-21
    • /
    • 2013
  • 본 연구는 3차원 위험성평가 시뮬레이션 툴(FLACS)을 활용하여 연료의 종류에 따른 위험성을 비교 평가하였다. 일반적인 고압가스 충전소 레이아웃을 활용하여 연료를 CNG, 수소, 30%HCNG로 하였을 경우 충전소에서 가스누출에 의한 화재 폭발 상황을 모사하여 피해영향을 비교 분석하였다. 그리고 가스별 누출제트에 의한 피해영향을 평가하였다. 동일한 조건에서 수소, CNG, HCNG가 누출되어 화재폭발이 발생할 경우 수소는 최대과압이 30kPa, HCNG는 3.5kPa 그리고 CNG는 0.4kPa의 과압이 측정되었다. HCNG의 과압이 CNG에 비해 7.75배 높게 측정되었으나, 수소에 비해서는 11.7%에 불과했다. 화염 전파에 있어서 수소는 매우 빠른 화염전파 특성을 가지는 반면 HCNG와 CNG는 수소에 비해 전파속도 및 전파거리에서 비교적 안전한 경향을 보였다. 제트화염에 의한 화염경계거리는 수소가 5.5m, CNG가 3.4m이고 HCNG는 CNG보다 약간 확장된 3.9m로 예측되었다.

Kinetic Spray 공정으로 제조된 탄탈륨 코팅층의 열처리 분위기에 따른 미세조직 및 물성 (Effect of Heat Treatment Environment on the Microstructure and Properties of Kinetic Sprayed Tantalum Coating Layer)

  • 이지혜;김형준;이기안
    • 한국분말재료학회지
    • /
    • 제22권1호
    • /
    • pp.32-38
    • /
    • 2015
  • The effect of heat treatment environment on the microstructure and properties of tantalum coating layer manufactured by kinetic spraying was examined. Heat treatments are conducted for one hour at $800^{\circ}C$, $900^{\circ}C$, and $1000^{\circ}C$ in two different environments of vacuum and Ar gas. Evaluation of microstructure and physical properties are conducted. High density ${\alpha}$-tantalum single phase coating layer with a porosity of 0.04% and hardness of 550 Hv can be obtained. As heat treatment temperature increases, porosity identically decreases regardless of heat treatment environment (vacuum and Ar gas). Hardness of heat treated coating layer especially in Ar gas environment deceases from 550 Hv to 490 Hv with increasing heat treatment temperature. That in vacuum environment deceases from 550 Hv to 530 Hv. The boundary between particles became vague as heat treatment temperature increases. Oxygen distribution of tantalum coating layer is minute after heat treatment in vacuum environment than Ar gas environment.

소형가스루프 시험조건에서 중형 공정열교환기 시제품의 고온구조해석 (High-Temperature Structural Analysis on the Medium-Scale PHE Prototype under the Test Condition of Small-Scale Gas Loop)

  • 송기남;홍성덕;박홍윤
    • 한국압력기기공학회 논문집
    • /
    • 제8권1호
    • /
    • pp.33-38
    • /
    • 2012
  • A PHE (Process Heat Exchanger) in a nuclear hydrogen system is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to a chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute has established a small-scale gas loop for the performance test on VHTR components and recently has manufactured a medium-scale PHE prototype made of Hastelloy-X. A performance test on the PHE prototype is scheduled in the gas loop. In this study, high-temperature structural analysis modeling, and macroscopic thermal and structural analysis of the medium-scale PHE prototype by imposing the established displacement boundary constraints in the previous research were carried out under the gas loop test condition. The results obtained in this study will be compared with performance test results.

개도율에 따른 가스파이프라인용 볼 밸브 후류유동의 수치평가 (Numerical Evaluation of Flow Nature at the Downstream of a Ball Valve Used for Gas Pipelines with Valve Opening Rates)

  • 김철규;이상문;장춘만
    • 한국수소및신에너지학회논문집
    • /
    • 제29권4호
    • /
    • pp.370-377
    • /
    • 2018
  • Ball valve has been widely used in the field of high-pressure gas pipeline as an important component because of its low flow resistance and good leakage performance. The present paper focuses on the flow nature at the downstream of the ball valve used for gas pipelines according to valve opening rates. Steady 3-D RANS equations, SC/Tetra, have been introduced to analyze the flow characteristics inside the ball valve. Numerical boundary conditions at the inlet and outlet of the valve system are imposed by mass flow-rate and pressure, respectively. Velocity distributions obtained by numerical simulation are compared with respect to the valve opening rates of 30, 50, and 70%. Cavity distributions, asymmetry flow velocity and the flow stabilization point at each opening rate are also compared. When the valve opening rates are 30 and 50%, the flow stabilization requires the sufficient length of 10D or more due to the influence of the recirculation flow at the downstream of the valve.

연료 과농 가스발생기의 연소 안정성 특성 연구 (Combustion Stability Characteristics of Fuel-Rich Gas Generators)

  • 서성현;한영민;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.119-122
    • /
    • 2007
  • 본 연구에서는 가스발생기의 연소 안정 특성을 파악하기 위해 실험적 방법을 적용하였다. 액체산소와 Jet A-1을 추진제로 사용하며 연료 과농 상태에서 작동하는 실험 가스발생기는 연소실 축 방향 공진 모드에 결합된 1200 Hz 대역의 고주파 연소불안정을 겪었다. 이 연소불안정의 발생 유무는 연소실 출구부의 음향 경계 조건과 화염의 열 발생 축 방향 위치에 매우 민감하게 반응하였다. 결과적으로 단일 분사기 노즐 크기 증가에 의한 화염의 축 방향 길이 증가는 연소안정성을 확연하게 향상시켰다.

  • PDF

가스터빈 압축기용 허니컴 래버린스 실의 실제 운전조건에 따른 누설량 특성 분석 (HONEYCOMB LABYRINTH SEAL LEAKAGE CHARACTERISTIC ANALYSIS WITH ACTUAL OPERATING CONDITIONS ON THE COMPRESSOR OF GAS TURBINE)

  • 임샛별;김민규;강율호;박원규
    • 한국전산유체공학회지
    • /
    • 제20권4호
    • /
    • pp.102-108
    • /
    • 2015
  • Recently, There are many studies in progress in order to improve the efficiency of the gas turbine. Leakage in losses of the gas turbine account for the largest proportion. Seal is a sealing device to reduce the flow from leaking by the pressure difference inside the turbine. Compressor has another value according to the shape and pressure conditions in each stage. Thus, it is necessary to seal design for boundary conditions in order to minimize leakage. At the actual operating conditions of the compressor, numerical analysis of honeycomb labyrinth seal was performed in accordance with pressure, temperature, rotor speed for CFD. As a result, when the temperature increases, the leakage is decreased. Also, when the pressure increases linearly with increased leakage, and there was no effect of the rotation speed.

Large Hydromagnetic Axisymmetric Instability of a Streaming Gas Cylinder Surrounded by Bounded Fluid with Non Uniform Field

  • Radwan, Ahmed Elazab;Elogail, Mostafa Abdelrahman;Elazab, Nasser Elsaid
    • Kyungpook Mathematical Journal
    • /
    • 제47권4호
    • /
    • pp.455-471
    • /
    • 2007
  • The magnetohydrodynamic axisymmetric instability of a streaming gas jet surrounded by bounded fluid with non-uniform field has been developed. The problem is formulated, solved and the boundary conditions are applied across the interfaces. The eigenvalue relation is derived and discussed analytically and the results are confirmed numerically. Some reported works are recovered as limiting cases from the present general results. The streaming has a destabilizing effect for all short and long wavelengths. The capillary force is stabilizing for short wavelengths but it is destabilizing for long wavelengths. The axial magnetic fields interior the gas and fluid media are stabilizing. The transverse field is destabilizing for all wavelengths. The radii ratio of the gas and fluid cylinders plays an important role for stabilizing the model and made it more realistic one than the full liquid jet or/and the ordinary hollow jet. The numerical analysis clarify the stable and unstable domains based on different values of the various parameters of the problem.

  • PDF

Development of a Mechanistic Fission Gas Release Model for LWR $UO_2$ Fuel Under Steady-State Conditions

  • Koo, Yang-Hyun;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.229-246
    • /
    • 1996
  • A mechanistic model has been developed to predict the release behavior of fission gas during steady-state irradiation of LWR UO$_2$ fuel. Under the assumption that UO$_2$ grain surface is composed of fourteen identical circular faces and grain edge bubble can be represented by a triangulated tube around the circumference of three circular grain faces, it introduces the concept of continuous formation of open grain edges tunnels that is proportional to grain edge swelling. In addition, it takes into account the interaction between the gas release from matrix to grain boundary and the reintroduction of gas atoms into the matrix by the irradiation-induced re-solution of grain face bubbles. It also treats analytically the behavior of intragranular, intergranular, and grain edge bubbles under the assumption that both intragranular and intergranular bubbles are uniform in both radius and number density. Comparison of the present model with experimental data shows that the model's prediction produces reasonable agreement for fuel with centerline temperatures of 1000 to 140$0^{\circ}C$, wide scatter band for fuel with centerline temperatures lower than 100$0^{\circ}C$, and underprediction for fuel with centerline temperatures higher than 140$0^{\circ}C$.

  • PDF

Numerical study of oxygen transport characteristics in lead-bismuth eutectic for gas-phase oxygen control

  • Wang, Chenglong;Zhang, Yan;Zhang, Dalin;Lan, Zhike;Tian, Wenxi;Su, Guanghui;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2221-2228
    • /
    • 2021
  • One-dimensional oxygen transport relation is indispensable to study the oxygen distribution in the LBE-cooled system with an oxygen control device. In this paper, a numerical research is carried out to study the oxygen transport characteristics in a gas-phase oxygen control device, including the static case and dynamic case. The model of static oxygen control is based on the two-phase VOF model and the results agree well with the theoretical expectation. The model of dynamic oxygen control is simplified and the gas-liquid interface is treated as a free surface boundary with a constant oxygen concentration. The influences of the inlet and interface oxygen concentration, mass flow rate, temperature, and the inlet pipe location on the mass transfer characteristics are discussed. Based on the results, an oxygen mass transport relation considering the temperature dependence and velocity dependence separately is obtained. The relation can be used in a one-dimensional system analysis code to predict the oxygen provided by the oxygen control device, which is an important part of the integral oxygen mass transfer models.

250kW급 폐열회수 시스템용 유기랭킨사이클 배관 열유동해석에 관한 연구 (Thermal and Flow Analysis of Organic Rankine Cycle System Pipe Line for 250 kW Grade Waste Gas Heat Recovery)

  • 김경수;방세경;서인호;이상윤;이중섭
    • 한국기계가공학회지
    • /
    • 제18권4호
    • /
    • pp.26-33
    • /
    • 2019
  • This study is a thermal and flow analysis of Organic Rankine Cycle (ORC) pipe line for 250 kW grade waste gas heat recovery. We attempted to obtain the boundary condition data through the process design of the ORC, which can produce an electric power of 250 kW through the recovery of waste heat. Then, we conducted a simulation by using STAR-CCM+ to verify the model for the pipe line stream of the 250 kW class waste heat recovery system. Based on the results of the thermal and flow analyses of each pipe line applied to the ORC system, we gained the following conclusion. The pressure was relatively increased at the pipe outside the refracted part due to the pipe shape. Moreover, the heat transfer amount of the refrigerant gas line is relatively higher than that of the liquid line.