• Title/Summary/Keyword: Gas blast

Search Result 177, Processing Time 0.025 seconds

A study on the pressure behaviour during the rupture by gas explosion

  • Kim, Min-Kyu;Oh, Kyu-Hyung;Kim, Hong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.275-281
    • /
    • 1997
  • The destruction by accident is affected by the blast of explosion. However, there are few of research on the external effect of vented gas explosions. Therefore it is necessary to study the effect of vented explosion. This study aims to find the characteristics of gas explosion, and the effect of vented gas explosion. Using an explosion chamber, we obtained a LPG explosion characteristics according to the vent size and concentration. The result of experiment showed that the explosion pressure effect to external space was much stronger than inner space during the course of a gas explosion. And the external pressure become higher in explosion pressure as the vent diameter become smaller.

  • PDF

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part B: Analysis for the Effect of Explosion Loading Time According to the Natural Period for Target Structures - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part B: 고유주기에 따른 폭발하중 지속시간의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.197-205
    • /
    • 2015
  • Offshore structures for the gas production are exposed to the risk of gas leaks, and gas explosions can result in fatal damages to the primary structures as well as secondary structures. To minimize the damage from the critical accidents, the study of the dynamic response of structural members subjected to blast loads must be conducted. Furthermore, structural dynamic analysis has to be performed considering relationships between the natural frequency of structural members and time duration of the explosion loading because the explosion pressure tends to increase and dissipate within an extremely short time. In this paper, the numerical model based on time history data were proposed considering the negative phase pressure in which considerable negative phase pressures were observed in CFD analyses of gas explosions. The undamped single degree of freedom(SDOF) model was used to characterize the dynamic response under the blast loading. A blast wall of FPSO topside was considered as an essential structure in which the wall prevents explosion pressures from the process area to utility and working areas. From linear/nonlinear transient analyses using LS-DYNA, it was observed that dynamic responses of structures were influenced by significantly the negative time duration.

Damage Evaluation of Bi-directionally Prestressed Concrete Panels under Blast-fire Combined Loading (폭발 후 화재하중 시나리오에 따른 2방향 프리스트레스트 콘크리트 패널부재의 손상도 평가)

  • Choi, Ji-Hun;Choi, Seung-Jai;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.237-248
    • /
    • 2017
  • Frequent terror or military attack by explosion, impact, fire accidents have occurred recently. These attacks and incidents raised public concerns and anxiety of potential terrorist attacks on important infrastructures. However, structural behavioral researches on prestressed concrete (PSC) infrastructures such as Prestressed Concrete Containment Vessel (PCCV) and Liquefied Natural Gas (LNG) storage tanks under extreme loading are significantly lacking at this time. Also, researches on possible secondary fire scenarios after terror and bomb explosion has not been performed yet. Therefore, a study on PSC structural behavior from an blast-induced fire scenario was undertaken. To evaluate the blast-fire combined resistance capacity and its protective performance of bi-directional unbonded PSC member, blast-fire tests were carried out on $1,400mm{\times}1,000mm{\times}300mm$ PSC specimens. Blast loading tests were performed by the detonation of 25 kg ANFO explosive charge at 1.0 m standoff distance. Also, fire and blast-fire combined loading were tested using RABT fire loading curve. The test results are discussed in detail in the paper. The results can be used as basic research references for related research areas, which include protective design simulation under blast-fire combined loading.

Study on the Pressurized Steam Reforming of Natural Gas and Biogas Mixed Cokes Oven Gas (코크스오븐가스 기반 천연가스, 바이오가스가 혼합된 연료의 가압 수증기 개질 반응에 관한 연구)

  • CHEON, HYUNGJUN;HAN, GWANGWOO;BAE, JOONGMYEON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.111-118
    • /
    • 2019
  • Greenhouse gas emissions have a profound effect on global warming. Various environmental regulations have been introduced to reduce the emissions. The largest amount of greenhouse gases, including carbon dioxide, is produced in the steel industry. To decrease carbon dioxide emission, hydrogen-based iron oxide reduction, which can replace carbon-based reduction has received a great attention. Iron production generates various by-product gases, such as cokes oven gas (COG), blast furnace gas (BFG), and Linz-Donawitz gas (LDG). In particular, COG, due to its high concentrations of hydrogen and methane, can be reformed to become a major source of hydrogen for reducing iron oxide. Nevertheless, continuous COG cannot be supplied under actual operation condition of steel industry. To solve this problem, this study proposed to use two alternative COG-based fuel mixtures; one with natural gas and the other with biogas. Reforming study on two types of mixed gas were carried out to evaluate catalyst performance under a variety of operating conditions. In addition, methane conversion and product composition were investigated both theoretically and experimentally.

Blast Design for Improvement of Limestone Fragmentation (석회석 파쇄도 향상을 위한 발파 설계)

  • Piyush, Rai;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.28 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • The paper presents a case study of a limestone quarry of the Philippines, where major problems in terms of improper fragmentation, poor wall control, and poor heave of the muck pile were witnessed. The paper highlights the significant role of switching over from diagonal firing pattern to V-type firing pattern, and also of making suitable adjustments in the stemming column length for improved confinement and gas retention. The study revealed that by making aforesaid design modifications in the blast round, marked improvement in blasting results was registered. Looking at the results, it was further contemplated to expand the mesh area in the subsequent blast rounds. The mesh area was incremented from the existing $8.96m^2$ to $12m^2$. The results were meticulously registered in the field, and clearly depicted definite improvements in the blast results in terms of increased P.F., reduced boulder count, reduced FEL cycle time, reduced dozing hours and improved heave.

A Study on Estimation Model of Strength Development of Concrete Using Fly Ash and Ground Granulated Blast-Furnace Slag (플라이애시 및 고로슬래그 미분말을 사용한 콘크리트의 강도 발현 예측 모델식 연구)

  • Choi, Yun-Wang;Park, Man-Seok;Jeong, Jae-Gwon;Choi, Byung-Geol;Kim, Kyung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.87-93
    • /
    • 2013
  • Recently, the amount of the mineral admixture including fly ash and ground granulated blast-furnace slag was increased for the purpose of $CO_2$ gas emission reduction in the concrete industry. However, in the case of korea, estimation model of strength development in concrete structural design code was prescribed a constant value according to cement type and curing method about the portland cement. therefore, the properties of strength development according to time of concrete using fly ash and ground granulated blast-furnace slag does not reflected estimation model of strength development. Accordingly, this paper was evaluated strength according to time on the concrete strength range using fly ash and ground granulated blast-furnace Slag and the strength development constant ${\beta}_{sc}$ of concrete according to the kind of the mineral admixture and mixing ratio was proposed.

Analysis on the Mass Loss in Self-blast type $SF_6$ Gas Circuit Breaker (Self-blast형 $SF_6$ 가스 차단기의 노즐용삭 분석)

  • Jeong, Young-Woo;Bae, C.Y.;Ahn, H.S.;Choi, J.W.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1422-1423
    • /
    • 2006
  • In our study, the PTFE nozzle ablation in the high-voltage self-blast type $SF_6$ gas circuit breaker was investigated. The test circuit breaker has the structure that the pin electrode is moving and the pressure reservoir volume and the dimension is almost same as commercial 145kv 40kA circuit breaker for similar result in real circuit breaker. The variation of current and arcing time was the range of $36kA_{rms}$(symmetry) - $40kA_{rms}$(asymmetry) and 10-16 ms. From the measured data the tendecy of the mass loss of the nozzle to current load and arc energy was estimated. In this process, the distance from the arc to nozzle(PTFE) surface, area which was exposed to arc and stroke contour was considered. These results will be used to enhance the accuracy of the computational fluid dynamics analysis in circuit breaker and estimate the residual life time of a circuit breaker.

  • PDF

The Study on Pressure Confine Effect of Blast Stemming Material and Plug Device Using Numerical Analysis Technique (수치해석 기법을 이용한 발파전색재료 및 플러그 장치의 폭발압 저항 효과에 관한 연구)

  • Ko, Younghun;Kwak, Kiseok;Seo, Seunghwan;Jeong, Youngjun;Kim, Sik;Chung, Moonkyung
    • Explosives and Blasting
    • /
    • v.40 no.2
    • /
    • pp.1-14
    • /
    • 2022
  • Numerical simulation is the most widely used methods for evaluating blasting performance. This study, conducted the numerical analysis of shock chamber model to evaluate the pressure confine effect of the stemming material and plug device. The stemming effect was compared and evaluated with that of the STF-based stemming material currently under development and sand, which is a commonly used blast stemming material. Furthermore, to verify of enhancement the confine effect inside blast hole pressure, three types of stemming plugs were adopted for the numerical analysis. The numerical simulation results revealed that the STF-based stemming materials were superior to the general stemming material. Also, It is evaluated that the STF-based stemming and Plug system can not only prevent detonation gas from overflowing the borehole prematurely, but also prolong the action time and scope of detonation gas in the borehole effective.

The numerical analysis of gas blast arcs for 800kV GCB (800kV 가스차단기의 아크특성 해석)

  • Chulkov, V.V.;Shin, Y.J.;Park, K.Y.;Song, K.D.;Choi, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1287-1289
    • /
    • 1995
  • For the analysis of hot gas flow due to arc in puffer type $SF_6$ gas circuit breakers(GCBs), a program has been developed by adding function for arcing to the Fluid-in Cells(FLIC) method, which is often used for a two dimensional compressible flow problems, utilizing a simplified enthalpy flow arc model available for arcing. In this paper, the results of arc modelling for 800kV GCB are presented and compared with that of cold gas flow in the interrupters. It is shown that the nozzle clogging is the dominating factor in the pressure rise of the puffer chamber. It permits to estimate the dielectric strength of interrupters.

  • PDF

A combustion control modeling of coke oven by Swarm-based fuzzy system (스왐기반 퍼지시스템을 이용한 코크오븐 연소제어 모델링)

  • Ko, Ean-Tae;Hwang, Seok-Kyun;Lee, Jin-S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.493-495
    • /
    • 2005
  • This paper proposes a swarm-based fuzzy system modeling technique for coke oven combustion control diagnosis. The coke plant produces coke for the blast furnace plant in steel making process by charging coal into oven and supplying gas to carbonize it. A conventional mathematical model for coke oven combustion control has been used to control the amount of gas input, but it does not work well because of highly nonlinear feature of coke plant. To solve this problem, swarm-based fuzzy system modeling technique is suggested to construct a diagnosis model of coke oven combustion control. Based on the measured input-output data pairs, the fuzzy rules are generated and the parameters are tuned by the PSO(Particle Swarm Optimizer) to increase the accuracy of the fuzzy system is operated. This system computes the proper amount of gas input taking the operation conditions of coke oven into account, and compares the computed result with the supplied gas input.

  • PDF