• Title/Summary/Keyword: Gas adsorption efficiency

Search Result 125, Processing Time 0.029 seconds

SOx and NOx removal performance by a wet-pulse discharge complex system (습식-펄스방전 복합시스템의 황산화물 및 질소산화물 제거성능 특성)

  • Park, Hyunjin;Lee, Whanyoung;Park, Munlye;Noh, Hakjae;You, Junggu;Han, Bangwoo;Hong, Keejung
    • Particle and aerosol research
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • Current desulfurization and denitrification technologies have reached a considerable level in terms of reduction efficiency. However, when compared with the simultaneous reduction technology, the individual reduction technologies have issues such as economic disadvantages due to the difficulty to scale-up apparatus, secondary pollution from wastewater/waste during the treatment process, requirement of large facilities for post-treatment, and increased installation costs. Therefore, it is necessary to enable practical application of simultaneous SOx and NOx treatment technologies to remove two or more contaminants in one process. The present study analyzes a technology capable of maintaining simultaneous treatment of SOx and NOx even at low temperatures due to the electrochemically generated strong oxidation of the wet-pulse complex system. This system also reduces unreacted residual gas and secondary products through the wet scrubbing process. It addresses common problems of the existing fuel gas treatment methods such as SDR, SCR, and activated carbon adsorption (i.e., low treatment efficiency, expensive maintenance cost, large installation area, and energy loss). Experiments were performed with varying variables such as pulse voltage, reaction temperature, chemicals and additives ratios, liquid/gas ratio, structure of the aeration cleaning nozzle, and gas inlet concentration. The performance of individual and complex processes using the wet-pulse discharge reaction were analyzed and compared.

A Basic Design of Multi Energy Hub Based on Natural Gas Governor Station (가스정압관리소 기반의 복합에너지허브 기본설계)

  • PARK, SOJIN;KIM, HYOUNGTAE;KIM, JINWOOK;KANG, IL-OH;YOO, HYUNSUK;CHOI, KYOUNGSHIK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.405-410
    • /
    • 2020
  • In this literature, we are introduce a basic design of multi energy hub based on natural gas governor station. Multi energy hub consists of turbo expender generator, phosphoric acid fuel cell, pressure swing adsorption, H2 charging station, utilities and etc. We design a hybrid energy hub system that provides energy using these complex energies, and calculates the amount of electricity that can be produced and the amount of hydrogen charged through the process analysis. TEG and phosphoric acid fuel cell produce 2,290 to 2,380 kW and can supply electricity to 500 houses. In addition, By-product H2 gas is refined to H2 vehicle fuel. This will help maximize the balance of energy demand and supply and improve national energy efficiency by integrating unused decompression energy power generation technology and various power generation/heat source technologies.

Characteristics of Heat Stable Salts Treatment Using Anion Exchange Resins in CO2 Absorption Process (음이온교환수지를 이용한 CO2 흡수 공정시 발생하는 열안정성염 처리 특성)

  • Park, Kyung-Bin;Cho, Jun-Hyoung;Jeon, Soo-Bin;Lim, You-Young;OH, Kwang-Joong
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.22-32
    • /
    • 2015
  • In this study, we studied the characteristics of ion exchange for treatment of HSS (heat stable salts) which cause performance reduction in CO2 gas capture amine solution using anion exchange resins. The optimum HSS removal efficiency, 96.1% was obtained when using strong base anion exchange resin SAR10 at dosage 0.05 g/mL, 316 K, pH 12 and the best resin regeneration efficiency, 78.8% was obtained using NaOH solution of 3 M at 316 K. The adsorption data were described well by the Freundlich model and the sorption intensity(n) was 2.0951 lying within the range of favorable adsorption. The adsorption selectivity coefficients were increased by increasing valences and size of ion and desorption selectivity coefficients showed a contradictory tendency to adsorption selectivity coefficients. By continuous HSS removal experiments, 13.3 BV of HSS contaminated solution was effectively treated and the optimum NaOH solution consumption was 5.2 BV to regenerate resins.

Sorption Behavior of 1-Methylcyclopropene on Adsorbing Agents for Use in Extending the Freshness of Postharvest Food Products

  • Lee, Youn-Suk;Shin, Han-Seung
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.572-577
    • /
    • 2006
  • The physiochemical interactions of 1-methylcyclopropene (1-MCP) and adsorbing agents can be described using a very powerful tool, inverse gas chromatography (IGC). Sorption behavior of 1-MCP on various adsorbing agents was assessed using the profile peaks of 1-MCP at an infinite dilution concentration using the IGC technique. Chromatogram peaks of 1-MCP adsorption were not observed for the adsorbing agent activated carbon. The forms of sorption isotherms followed Henry's law, and behaved according to the binding site theory. Specific retention volume and distribution coefficients for 1-MCP on the adsorbing agents were determined at 50, 60, 70, and $80^{\circ}C$, respectively. Silica gel had a much higher number of binding sites for 1-MCP compared to Tenax-TA and activated clay agents. Meanwhile, activated carbon proved to be a very strong binding agent for 1-MCP based on 1-MCP efficiency experiments on the selected adsorbing agents. However, as a proper means of delivering 1-MCP molecules to fresh food products, activated carbon is not fit for the binding and release of 1-MCP gas under dry or high humidity conditions because activated carbon has a strong affinity for 1-MCP, even when treated with distilled water.

Treatment of Halogen Gases, BCl3 and CF4, used in Semiconductor Process by Using Inorganic Gas Adsorption Agents (무기흡착제를 이용한 반도체 공정에서 사용되는 할로겐 가스 (BCl3, CF4) 의 처리 및 측정에 관한 연구)

  • Lim, H.B.;Hwang, Cheong-Soo;Park, Jeong-Jun
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.368-374
    • /
    • 2003
  • Halogen gases such as $BCl_3$ and $CF_4$ are among the most problematic gases used in semiconductor process. They raise serious environmental and health problems due to their extreme toxicity. This study is to develop a method to effectively remove those gases during the process by using various types of inorganic gas adsorption agents such as zeolite A, modified AgA zeolite, ZnO, and $AgMnO_3$, which have not been attempted in the conventional methods. The removal efficiencies of the gases were both qualitatively and quantitatively measured by a FT-IR spectrophotometer. The whole device for the measurement has been designed and built in our lab. The removal efficiencies of the gases were compared between those used resins. The experimental result revealed that ZnO showed the best removal efficiency for BCl3 gas that had removed 0.094 g per 1 g of the resin used. For $CF_4$ gas, none of the solid resins was able to remove the gas effectively. However, liquid $CHCl_3$ showed some removal ability of the $CF_4$ gas.

The Utilization of Waste Seashells for $H_{2}S$ Removal

  • Kim, Young-Sik;Suh, Jeong-Min;Jang, Sung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.6
    • /
    • pp.483-488
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_{2}$S was studied in a thermogravimetric analyzer at temperature between 600 and $800^{circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the $H_{2}$S removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy (SEM). Measurements of the reaction of $H_{2}$S with waste seashells show that particles smaller than 0.631 mm can achieve high conversion to CaS. According to TGA and fixed bed reactor results, temperature had influenced on $H_{2}$S removal efficiency. As desulfurization temperature increased, desulfurization efficiency increased. Also, maximum desulfurization efficiency was observed at $800^{circ}C$. Desulfurization was related to calcinations temperature.

Characteristics of Cyclone and Electric Dust Collection Oil Filters for Selective Removal of Fiber Tenter Air Pollutants (섬유 텐터 대기오염물질의 선택적 제거를 위한 싸이클론 및 전기 집진 오일필터의 특성)

  • Jin Ho Jung;Seung Hwan Ryu;Soon Duk Kwon;Yoon Hyun Cho
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.256-273
    • /
    • 2023
  • Among the dyeing industries, the tenter process is a process that improves the quality of fibers by drying and ironing (heat treatment) dyed fabrics, and drugs such as water repellents, antistatic agents, and fiber softeners are mainly used in these tenter processes. These drugs are vaporized in the process of treatment by high temperatures (180 ~ 230℃), and are observed in a complex form such as white smoke, oil mist, and fine dust, causing odor. To treat the complex exhaust gas at the rear end of the tenter facility, most companies operate by installing a wet scrubber and an adsorption tower alone or in parallel, but there are many problems. In particular, the insoluble oil mist at the rear end of the tenter has significantly low processing efficiency in the cleaning dust collection facility, and there is a problem in the facility by adsorption due to the occlusion phenomenon caused by the oil mist. In addition, the odor gas at the rear end of the tenter contains a lot of aldehydes, and in order to improve these various problems, a complex exhaust purification device using cyclone and electric support collector was developed. This study examined the applicability of economical and efficient technology by removing complex air pollution at the rear end of the tenter and applying improved technology than the existing technology.

Study on Chemical Removal of Nitric Oxide (NO) as a Main Cause of Fine Dust (Air Pollution) and Acid Rain

  • Seo, Hyeon Jin;Jeong, Rak Hyun;Boo, Jang-Heon;Song, Jimin;Boo, Jin-Hyo
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.218-222
    • /
    • 2017
  • This study was conducted to remove $NO_x$, which is the main cause of fine dust and air pollution as well as acid rain. $NO_x$ was tested using 3% NO (diluted in He) as a simulated gas. Experiments were sequentially carried out by oxidizing NO to $NO_2$ and absorbing $NO_2$. Especially, we focused on the changes of NO oxidation according to both oxidant ($NaClO_2$) concentration change (1~10 M) and oxidant pH change (pH = 1~5) by adding HCl. In addition, we tried to suggest a method to improve $NO_2$ absorption by conducting $NO_2$ reduction reaction with reducing agent (NaOH) concentration (40~60%). It was found that NO removal efficiency increased as both concentration of oxidant and flow rate of NO gas increased, and NO decreased more effectively as the pH of hydrochloric acid added to the oxidant was lower. The $NO_2$ adsorption was also better with increasing NaOH concentration, but the NO removal efficiency was ~20% lower than that of the selective NO reduction. Indeed, this experimental method is expected to be a new method that can be applied to the capture and removal of fine dust caused by air pollution because it is a method that can easily remove NO gas by a simple device without expensive giant equipment.

Developmemt of Rice Husk Pellets as Bio-filter Media of Bio Scrubber Odor Removal System (왕겨펠렛 생물담체 개발 및 이를 이용한 bio scrubber형 악취제거 시스템 성능평가)

  • Bae, Jiyeol;Han, Sangjong;Park, Ki Ho;Kim, Kwang-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.554-566
    • /
    • 2018
  • The rice husk contains nutrients which can be easily utilized by microorganisms, and also has a water retaining ability, which played a crucial part in enabling it to become a biofilter media. In this study, we evaluated the applicability of rice husk pellet bio-scrubber as a microbiological carrier. The pelletization experiment of rice husk as a biological media was performed using PVA and EVA binder. Also, the feasibility tests of rice husk as a biological media for odor removal were carried out in order to know whether rice-husk contains useful components as a media for microbiological growth or not. Lastly, a combined test for odor gas absorption and biological oxidation was conducted using a lab scale bio-filter set-up packed with rice-husk pellets as wet-scrubber. The major components of the rice husk were carbon, hydrogen, nitrogen, and oxygen, while carbon acted as the main ingredient which comprised up to 23.00%. The C : N : P ratio was calculated as 45 : 1 : 2. Oxygen uptake rate, yield and decay rate of the rice husk eluent was calculated to be $0.0049mgO_2/L/sec$, 0.24 mgSS/mgCOD and 0.004 respectively. The most stable form of rice husk pellets was produced when the weight of the rice husk, EVAc, PVAc, and distilled water was 10 : 2 : 0.2 : 10. The prepared rice husk pellets had an apparent density of 368 g/L and a porosity of 59.00% upon filling. Dry rice husks showed high adsorption capacity for ammonia gas but low adsorption capacity for hydrogen sulfide. The bio-filter odor removal column filled with rice husk pellets showed more than 99.50% removal efficiency for NH3 and H2S gas. Through the analysis of circulation water, the prime removal mechanism is assumed to be the dissolution by water, microbial nitrification, and sulfation. Finally, it was confirmed that the microorganisms could survive well on the rice husk pellets, which provided them a stable supply of nutrients for their activity in this long-term experiment. This adequate supply of nutrients from the rice husk enabled high removal efficiency by the microorganisms.

Application of High-temperature 3-phase Equilibrium Distribution to Dry Scrubber for the Simultaneous Removal of $SO_2$ and Vinyl Chloride (건식세정기에서의 오염물 동시제거를 위한 고온3계평형 모델의 적용과 예비설계에의 응용)

  • 구자공;백경렬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.85-96
    • /
    • 1990
  • Simultaneous removal efficiencies of hydrophilic and hydrophobic gaseous pollutants are experimentally determined, and the macroscopic removal mechanism of pollutants in a dry scrubber is analyzed using the extended model of three phase equilibrium distribution of pollutant at high temperatures that can describe the different morphological conditions of adsorbent and water at varying relative humidities. For the simplicity, the inside of spray dryer is divided into three regions of ; (1) absorption, (2) three-phase equilibrium, and (3) adsorption, and the removal efficiencies of each pollutants at three regions are observed at different experimental conditions to estimate the effects of important parameters of dry scrubber. The laboratory experiments simulate the three regions of spray dryer with the temperature control and thus evaporation rate of water from the slurry particle. $SO_2$ as a hydrophilic gaseous pollutant and vinyl chloride as a hydrophobic toxic gas are selected for the future field application to soid waste incineration, and the two types of slurry are made of the two sorbents ; 10 wt.% $Ca(OH)_2$, and 10 wt.% NaOH. Result of temperature effect shows the height of absorption plus three-phase region is decreased as the operation temperature is increased, which results in the lower removal efficiency of $SO_2$ but higher removal for vinyl chloride in the adsorption region of dry scrubber. The removal efficiency of $SO_2$ is higher by NaOH slurry than by $Ca(OH)_2$ slurry due to the hygroscopic nature of NaOH, while the removal of vinyl chloride is higher in $Ca(OH)_2$ case. From the analysis of redults using three-phase equilibrium distribution model, the effective two-phase partition coefficients can be obtained, and the possible extention in the application of the three-phase equilibrium model in a dry scrubber design has been demonstrated.

  • PDF