• Title/Summary/Keyword: Gas abundances

Search Result 30, Processing Time 0.022 seconds

Abundance Anomalies and Star Formation History of merging BCDs

  • Jeong, Ji-Won;Seong, Eon-Chang;Lee, Su-Chang;Gyeong, Jae-Man
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.58.1-58.1
    • /
    • 2011
  • We present elemental abundances of 95 blue compact dwarf galaxies (BCDs) at z=0.2~0.35 using the Sloan Digital Sky Survey (SDSS) DR7. We derived element abundances using Te method. We found that nitrogen abundance of merging BCDs are more enriched than normal BCDs by fast rotating young massive star. On the other hand, neon and oxygen abundances for merging BCDs are slightly lower than the normal BCDs. This might be result from the dilution by metal-poor gas infall during the interaction. This means that merging BCDs undergone star formation event for a long time than normal BCDs and we trying to explain using STARLIGHT code and various star formation rates (SFRs) ratios. At a result, merging BCDs have older stellar population (>10 Myr) more than normal BCDs and have clear distinction in elements abundances versus Ha/UV diagram. We also discuss the characteristics of post merger candidate using FUV to NUV ratios.

  • PDF

DISTRIBUTIONS OF DENSITY, TEMPERATURE AND ABUNDANCES IN THE ORION NEBULA

  • Kim, Dong-Woo;Hong, Seung-Soo
    • Journal of The Korean Astronomical Society
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 1982
  • To derive the distributions of electron density, temperature and gas-phase metal abundances within the Orion Nebula, we have performed a non-LTE analysis to the radio observations of hydrogen recombination lines and continuum flux over the frequency range from 0.1GHz to 100GHz. We have explicitly included the thermal balance condition in our analysis, hence our derived distributions have their internal consistencies. This enables us to derive the radial distribution of Oxygen and Nitrogen. The gas-phase concentrations of these cooling agents show about the solar values at the very central part of the nebula, then, decrease slowly outward, and finally become about one quarter of the solar values in the outer extended envelope. Such an outward decrease is interpreted as an outward increase of dust concentrations in the Orion.

  • PDF

The Chemical Composition of HD47536: A Planetary Host Halo Giant with Possible 𝛌 Bootis Features and Signs of Interstellar Matter Accretion

  • Yushchenko, Alexander;Doikov, Dmytry;Andrievsky, Sergei;Jeong, Yeuncheol;Yushchenko, Volodymyr;Rittipruk, Pakakaew;Kovtyukh, Valery;Demessinova, Aizat;Gopka, Vira;Raikov, Alexander;Jeong, Kyung Sook
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.169-180
    • /
    • 2022
  • We investigated the chemical composition of the planetary host halo star HD47536 via high-resolution spectral observations recorded using a 1.5 meter Cerro Tololo Inter-American Observatory (CTIO) telescope (Chile). Furthermore, we determined the abundances of 38 chemical elements. Both light and heavy elements were overabundant compared to the iron group elements. The abundance pattern of HD47536 was similar to that of halo-type stars, with an enrichment of heavy elements. We analyzed the relationships between the relative abundances of chemical elements and their second ionization potentials and condensation temperatures. We demonstrated that the interplay of charge-exchange reactions owing to the accretion of interstellar matter and the gas-dust separation mechanism can influence the initial abundances and can be used to qualitatively explain the abundance patterns in the atmosphere of HD47536.

CHEMICAL ABUNDANCES OF THE SYMBIOTIC NOVA AG PEGASI

  • Kim, Hyouk;Hyung, Siek
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.23-37
    • /
    • 2008
  • The high-resolution optical region spectroscopic data of the symbiotic nova AG Peg secured with the Hamilton Echelle Spectrograph at the Lick Observatory, have been analyzed along with the International Ultraviolet Explorer UV archive data. We measure about 700 line intensities in the wavelengths of 3859 to $9230{\AA}$ and identify about 300 lines. We construct pure photoionization models that represent the observed lines and the physical condition for this symbiotic nova. The spectral energy distribution of the ionizing radiation is adopted from stellar model atmospheres. Based on photoionization models, we derive the elemental abundances; C & N appear to be similar to be smaller than the Galactic planetary nebular value while O is enhanced. Our result is compared with the Contini (1997, 2003) who analyzed the UV region spectral data with the shock + ionization model. The Fe abundance appears to be enhanced than that of normal planetary nebulae, which suggests that AG Peg may have formed in the Galactic disk. The models indicate that the temperature of the central star which excite the shell gas may have fluctuated to an unexpected extent during the years 1998 - 2002.

ROTATION AND SURFACE ABUNDANCE PECULIARITIES IN A-TYPE STARS

  • Takeda, Yoichi;Han, In-Woo;Kang, Dong-Il;Lee, Byeong-Cheol;Kim, Kang-Min
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.4
    • /
    • pp.83-98
    • /
    • 2008
  • In an attempt of clarifying the connection between the photospheric abundance anomalies and the stellar rotation as well as of exploring the nature of "normal A" stars, the abundances of seven elements (C, O, Si, Ca, Ti, Fe, and Ba) and the projected rotational velocity for 46 A-type field stars were determined by applying the spectrum-fitting method to the high-dispersion spectral data obtained with BOES at BOAO. We found that the peculiarities(underabundances of C, O, and Ca; an overabundance of Ba) seen in slow rotators efficiently decrease with an increase of rotation, which almost disappear at $v_esin\;i{\gtrsim}100km\;s^{-1}$. This further suggests that stars with sufficiently large rotational velocity may retain the original composition at the surface without being altered. Considering the subsolar tendency(by several tenths dex below) exhibited by the elemental abundances of such rapidly-rotating (supposedly normal) A stars, we suspect that the gas metallicity may have decreased since our Sun was born, contrary to the common picture of galactic chemical evolution.

Observations of the CH3OH 42-51 E Line Toward the Sgr B2 Region

  • Minh, Young-Chol;Kim, Sang-Joon
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.13-16
    • /
    • 2011
  • The $CH_3OH$ $4_2-5_1$ E transition was observed toward the Sgr B2 region, including the Principal Cloud and its surroundings. This methanol transition shows an extended emission along the 2'N cloud, which is believed to be colliding with the Principal Cloud and may trigger the massive star formation in this cloud. This extended methanol emission may also suggest that the 2'N cloud is under shocks. We derive total methanol column density $N(CH_3OH)\;=\;2.9{\pm}0.3{\times}10^{14}\;cm^{-2}$ toward the peak position of the extended emission. The fractional abundance of methanol is about 10.9, relative to the estimated total $H_2$ abundance, which is similar to the methanol abundances in quiet gas phase.

Nitrogen self-enrichment in the starburst galaxies under the metal poor environments

  • Chung, Ji-Won;Sung, Eon-Chang;Rey, Soo-Chang;Kyeong, Jae-mann
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.29.2-29.2
    • /
    • 2010
  • We present elemental abundances of 412 blue compact dwarf galaxies (BCDs) at z=0.2~0.5 using the Sloan Digital Sky Survey (SDSS) DR7. The gas-phase nitrogen to oxygen abundance ratios (N/O) of sample galaxies increase as the oxygen to hydrogen abundance ratios (O/H) decrease. This indicates that the nitrogen is more enriched than the oxygen. We found that there is a noticeable distinction between the merger candidates and the isolated galaxies. Merging candidates show more enrichment of nitrogen abundance compared to isolated galaxies. On the other hand, neon and oxygen abundances for merging candidates are slightly lower than the isolated systems. We discuss the main cause of these trends with internal mixing and mass loss by fast rotation of young massive stars. We also discuss the environmental effect to the relation between specific star formation rate and galaxy mass.

  • PDF

Chemical Properties of Emission Line Galaxies in the Virgo and Ursa Major Cluster

  • Chung, Ji-Won;Sung, Eon-Chang;Rey, Soo-Chang;Pak, Min-A;Kim, Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.78.2-78.2
    • /
    • 2011
  • We utilize Sloan Digital Sky Survey DR7 spectroscopy of ~600 emission line galaxies (ELGs) in the Virgo and Ursa Major clusters to investigate their chemical properties depending on the environments. We derived chemical abundances of galaxies using either a direct estimation of the electron temperature or empirical calibrations. We also estimated star formation rates (SFRs) using H alpha and GALEX ultraviolet (UV) luminosities. We see no significant difference of UV colors and SFRs of ELGs between the Virgo and Ursa Major, indicating weak dependence of their star formation activity on global cluster environment. We also discuss the segregation of gas-phase element abundances in cluster environment.

  • PDF

Star formation in high redshift early-type galaxies

  • Gobat, Raphael;Daddi, Emanuele;Magdis, Georgios;Bournaud, Frederic;Sargent, Mark;Martig, Marie;Jin, Shuowen;Hwang, Ho Seong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.40.1-40.1
    • /
    • 2017
  • Massive early-type galaxies (ETG) have been spectroscopically confirmed up to z>3 which, together with their ages and abundances at z>1.5, implies that their progenitors must have converted gas into stars on short timescales. The termination of star formation in these galaxies can occur through several channels, but they remain largely conjectural, in part due to the current lack of direct measurements of the amount of residual gas in high redshift ETGs. Here I will present constraints on the star formation rate and dust/gas content of z=1.4-2.5 ETGs. These galaxies, close to their epoch of quenching, contained more than 2 orders of magnitude more dust than their local counterparts, which suggests the presence of substantial amounts of gas and a low star formation efficiency.

  • PDF

HIGH BURNUP CHANGES IN UO2 FUELS IRRADIATED UP TO 83 GWD/T IN M5(R) CLADDINGS

  • Noirot, J.;Aubrun, I.;Desgranges, L.;Hanifi, K.;Lamontagne, J.;Pasquet, B.;Valot, C.;Blanpain, P.;Cognon, H.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.155-162
    • /
    • 2009
  • Since the 90's, EDF and AREVA-NP have irradiated, up to very high burnups, lead assemblies housing $M5^{(R)}$ cladded fuels. Post-irradiation examination of high burnup $UO_2$ pellets show an increase in the fission-gas release rate, an increase in fuel swelling, and formation of fission-gas bubbles throughout the pellets. Xenon abundances were quantified, and phenomena leading to this bubble formation were identified. All examinations provided valuable data on the complex state of the fuel during irradiation. They show the good behavior of these fuels, exhibiting various microstructures at very high burnups, none of which is likely to lead to problems during irradiation.