• Title/Summary/Keyword: Gas Valve

Search Result 696, Processing Time 0.025 seconds

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF

The Study of Energy Conversion in a 2 Ton/day Waste-wood Fixed Bed Gasifier (2톤/일 고정층 가스화기를 이용한 폐목재의 에너지 전환 연구)

  • Lee, See Hoon;Son, Young Il;Ko, Chang Bok;Choi, Kyung Bin;Kim, Jae Ho
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.391-395
    • /
    • 2009
  • For the conversion of domestic waste-wood into energy, a fixed bed gasifier ($0.9 m{\times}2.4 m$) having the capacity of 2 ton/day was designed and constructed. The dual knife valve was used to feed waste-wood of which size was 3~5 cm and a rotary stoker system was installed in the bottom of gasifier. The pilot gasification system consisted of feeding system, fixed bed gasifier, gravity fine particle collector, heat exchanger for syngas cooling, ID fan, and cooling tower. The operation temperatures of gasifier were $700{\sim}1000^{\circ}C$ and the concentrations of syngas were CO: 25~40 vol%, $H_2$: 7~12 vol%, $CH_4$: 2~4 vol%, $CO_2$: 12~24 vol%. The calorific value of syngas was $1100{\sim}1500kcal/Nm^3$ and was enough to be applied in the industrial combustor. Also the gas engine was operated by using syngas from biomass gasifier and produced 1~4 kW of power.

Studies on the Ventilatory Functions of the Korean Children and Adolescents, with Special References to Prediction Formulas (한국 어린이 및 청소년의 폐환기능에 관한 연구 - 특히 표준치 예측 수식에 관하여 -)

  • Park, Hae-Kun;Kim, Kwang-Jin
    • The Korean Journal of Physiology
    • /
    • v.9 no.2
    • /
    • pp.7-15
    • /
    • 1975
  • The maximum breathing capacity (MBC) and the maximum mid-expiratory flow rate (MMF) are widely used in evaluation of the ventilatory function, among various parameters of pulmonary function. The MBC volume is the amount of gas which can be exchanged per unit time during maximal voluntary hyperventilation. Performance of this test, unlike that of single breath maneuvers, is affected by the integrity of the respiratory bellows as a whole including such factors are respiratory muscle blood supply, fatigue, and progressive trapping of air. Because of this, the MBC and its relation to ventilatory requirement correlates more closely with subjective dyspnea than does any other test. The MMF is the average flow rate during expiration of the middle 50% of the vital capacity. The MMF is a measurement of a fast vital capacity related to the time required for the maneuver and the MMF relates much better to other dynamic tests of ventilatory function and to dyspnea than total vital capacity, because the MMF reflects the effective volume, or gas per unit of time. Therefore, it is important to have a prediction formula with one can compute the normal value for the subject and the compare with the measured value. However, the formulas for prediction of both MBC and MMF of the Korean children and adolescents are not yet available in the present. Hence, present investigation was attempt to derive the formulas for prediction of both MBC and MMF of the Korean children and adolescents. MBC and MMF were measured in 1,037 healthy Korean children and adolescents (1,035 male and 1,002 female) whose ages ranged from 8 to 18 years. A spirometer (9L, Collins) was used for the measurement of MBC and MMF. Both MBC and MMF were measured 3times in a standing position and the highest values were used. For measurement, the $CO_2$ absorber and sadd valve were removed from the spirometer in order to reduce the resistance in the breathing circuit and the subject was asked to breathe as fast and deeply as possible for 12 seconds in MBC and to exhale completely as fast as possible after maximum inspiration for MMF. During the measurement, investigator stood by the subject to give a constant encouragement. All the measured values were subsequently converted to values at BTPS. The formulas for MBC and MMF were derived by a manner similar to those for Baldwin et al (1949) and Im (1965) as function of age and BSA or age and height. The prediction formulas for MBC (L/min, BTPS) and MMF (L/min, BTPS) of the Korean children and adolescents as derived in this investigation are as follows: For male, MBC=[41.70+{$2.69{\times}Age(years)$}]${\times}BSA$ $(m^{2})$ MBC=[0.083+{$0.045{\times}Age(years)$}]${\times}Ht$ (cm) For female, MBC=[45.53+{$1.55{\times}Age(years)$}]${\times}BSA$ $(m^2)$ MBC=[0.189+{$0.029{\times}Age(years)$}]${\times}Ht$ (cm) For male, MMF= [0.544+{$0.066{\times}Age(years)$}]${\times}Ht$ (cm) For female, MMF=[0.416+{$0.064{\times}Age(years)$}]${\times}Ht$ (cm)

  • PDF

Energy Expenditure in Crossbred Cattle Fed Paddy Straw of Different Form

  • Bhatta, Raghavendra;Kumar, Vijay;Sridhar, Manpal;Singh, Khub
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1755-1760
    • /
    • 2006
  • Studies were carried out at the National Institute of Animal Nutrition and Physiology, India to determine the effect of feeding chopped paddy straw (Oryza sativa) on the energy expenditure in crossbred cattle. Four crossbred cattle male, aged 5-6 years and weighing about 450 kg were used for this study. Three experimental trials, one each for the feeding of un-chopped paddy straw offered ad libitum (UCA), chopped paddy straw fed at restricted level (CR) and chopped paddy straw offered ad libitum (CA) were conducted. The quantity of un-chopped paddy straw consumed during UCA was assumed as the voluntary intake by the cattle and the same quantity was offered after chopping during CR. Each trial comprised of 21 d preliminary feeding period and 5 d of observation recording period. Expired gas was collected in Douglas bags using a face-mask and three-way valve at 6 hourly intervals i.e., at 09.30, 15.30, 21.30, and 03.30 h throughout the observation period. Expired gas and ambient air inspired by the animals were analyzed for the oxygen content through paramagnetic oxygen analyzer. Energy expenditure (EE) by the animals was calculated by determining the volume of oxygen consumed per minute (STP) and multiplying by 4.825. Paddy straw used in all the three trials contained (g/kg DM) 90.0 CP, 786 OM, 700 NDF, 489 ADF, 357 Cellulose and 60.0 ADL. Metabolizable energy (ME) was 6.9 MJ/kg DM. Dry matter intake (DMI) both in UCA and CR was about 6.8 kg, except that it was chopped in CR. Chopping has resulted in 32% improvement (9 kg) in DMI of CA as compared to that of UCA. Although ME intake was similar in UCA and CR (47.2 MJ/day), energy expenditure (EE) was higher in UCA (23.3 MJ) when compared to that of CR (19.5 MJ). The ME intake (63.3 MJ) as well as EE (27.1 MJ) was highest in CA. Energy expenditure when expressed as MJ/kg DMI was 3.48, 2.90 and 3.12; whereas as per cent of ME intake it was 50, 41 and 44 in UCA, CR and CA respectively. Our study has unequivocally confirmed that chopping of poor quality roughages like paddy straw has definite advantages not only in terms of improving the intake by decreasing the time taken for ingestion but also in reducing the energy cost of eating.

Risk Assessment and Safety Measures for Methanol Separation Process in BPA Plant (BPA 공장의 메탄올 분리공정에서 위험성 평가 및 안전대책)

  • Woo, In-Sung;Lee, Joong-Hee;Lee, In-Bok;Chon, Young-Woo;Park, Hee-Chul;Hwang, Seong-Min;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.22-28
    • /
    • 2012
  • For a methanol separation column of the BPA (Bisphenol A) plant, HAZOP (hazard and operability) assessment was performed and damage ranges were predicted from the accident scenarios for the fire and the explosion. As a result, the damage range of the jet fire was 20 m in the case of rupture of the discharge pipe (50 mm diameter) of safety valve, and that of the flash fire was 267 m in the case of catastrophic rupture. Also, the damage ranges of the unconfined vapor cloud explosion (UVCE) for the rupture of the discharge pipe and for the catastrophic rupture were 22 m and 542 m, respectively. For the worst case of release scenarios, safety measures were suggested as follows: the pressure instruments, which can detect abnormal rise of the internal pressure in the methanol separation column, should be installed by the 2 out of 3 voting method in the top section of the column. Through the detection, the instruments should simultaneously shut down the control and the emergency shut-off valves.

Numerical Analysis of Flow Characteristies inside innes part of Fluid Control Valve System (유동해석을 통한 유체제어벨브 시스템의 내부 유동 특성 분석)

  • Son, Chang-Woo;Seo, Tae-Il;Kim, Kwang-Hee;Lee, Sun-Ryong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.160-166
    • /
    • 2018
  • The worldwide semi-conductor market has been growing for a long time. Manufacturing lines of semi-conductors need to handle several types of toxic gases. In particular, they need to be controlled accurately in real time. This type of toxic gas control system consists of many different kinds of parts, e.g., fittings, valves, tubes, filters, and regulators. These parts obviously need to be manufactured precisely and be corrosion resistant because they have to control high pressure gases for long periods without any leakage. For this, surface machining and hardening technologies of the metal block and metal gasket need to be studied. This type of study depends on various factors, such as geometric shapes, part materials, surface hardening method, and gas pressures. This paper presents strong concerns on a series of simulation processes regarding the differences between the inlet and outlet pressures considering several different fluid velocity, tube diameters, and V-angles. Indeed, this study will very helpful to determine the important design factors as well as precisely manufacture these parts. The EP (Electrolytic Polishing) process was used to obtain cleaner surfaces, and hardness tests were carried out after the EP process.

Quality Changes of Commercial Kimchi Products by Different Packaging Methods (소포장 김치의 포장방법별 품질특성 변화)

  • Hong, Seok-In;Park, Jin-Sook;Park, Noh-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.112-118
    • /
    • 1995
  • The effect of various packaging methods on kimchi quality was investigated in order to develop the packaging techniques for preventing commercial kimchi products from inflation and explosion, due to fermentative gas evolved during storage and distribution. Kimchi was packaged in different methods; 1) atmospheric packaging(AP), 2) check valve packaging(CV), 3) double packaging(DP), and 4) vacuum packaging(VP). The quality of kimchi during storage at $10^{\circ}C$ was evaluated in terms of gas composition, free volume, pH, titratable acidity color index and sensory properties. The gas composition inside packages showed different curves according to the packaging methods. Due to fermentative gas accumulation in both AP and CV, $CO_2$ concentration increased by 2 stepwise pattern, while $O_2$, concentration decreased exponentially. In DP, $O_2$ concentration remained constant, but $CO_2$ concentration increased by 2 stepwise pattern and then decreased. In contrast, VP produced low $O_2$ and high $CO_2$ concentrations only at the end of storage. The free volume in both AP and CV showed typical sigmoidal curves similar to $CO_2$ concentration changes. It remained constant in DP, but started to increase at the late stage of storage in VP. There was no significant effect of packaging methods on pH changes of kimchi. In titratable acidity, DP maintained relatively higher than others. Regarding to the color change of crushed kimchi juice in all packages, L and b values decreased exponentially but a value remained constant during storage. Color index(L b/a) of crushed kimchi juice decreased exponentially and remained constant at the end of storage. The growth of lactic acid bacteria was VP, CV, AP, DP in increasing order. In sensory test, the sourness scores of DP were fairly higher than those of others, but the texture was not significantly affected by the packaging methods. The preference for kimchi showed VP>AP, CV>DP in order of score. In this study, it could be proposed to employ DP and VP method as the effective packaging techniques for preventing commercial kimchi products from inflation.

  • PDF

A Case Study of Different Configurations for the Performance Analysis of Solid Oxide Fuel Cells with External Reformers (외부 개질형 평판형 고체 산화물 연료전지 시스템 구성법에 따른 효율특성)

  • Lee, Kang-Hun;Woo, Hyun-Tak;Lee, Sang-Min;Lee, Young-Duk;Kang, Sang-Gyu;Ahn, Kook-Young;Yu, Sang-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.343-350
    • /
    • 2012
  • A planar solid oxide fuel cell (PSOFC) is studied in its application in a high-temperature stationary power plant. Even though PSOFCs with external reformers are designed for application from the distributed power source to the central power plant, such PSOFCs may sacrifice more system efficiency than internally reformed SOFCs. In this study, modeling of the PSOFC with an external reformer was developed to analyze the feasibility of thermal energy utilization for the external reformer. The PSOFC system model includes the stack, reformer, burner, heat exchanger, blower, pump, PID controller, 3-way valve, reactor, mixer, and steam separator. The model was developed under the Matlab/Simulink environment with Thermolib$^{(R)}$ modules. The model was used to study the system performance according to its configuration. Three configurations of the SOFC system were selected for the comparison of the system performance. The system configuration considered the cathode recirculation, thermal sources for the external reformer, heat-up of operating gases, and condensate anode off-gas for the enhancement of the fuel concentration. The simulation results show that the magnitude of the electric efficiency of the PSOFC system for Case 2 is 12.13% higher than that for Case 1 (reference case), and the thermal efficiency of the PSOFC system for Case 3 is 76.12%, which is the highest of all the cases investigated.

Study on the Damage Pattern Analysis of a 3 Phase 22.9/3.3kV Oil Immersed Transformer and Judgment of the Cause of Its Ignition (3상 22.9/3.3kV 유입변압기의 소손패턴 해석 및 발화원인 판정에 관한 연구)

  • Choi, Chung-Seog
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1274-1279
    • /
    • 2011
  • The purpose of this paper is to present the manufacturing defect and damage pattern of a 3 phase 22.9/3.3kV oil immersed transformer, as well as to present an objective basis for the prevention of a similar accident and to secure data for the settlement of PL related disputes. It was found that in order to prevent the occurrence of accidents to transformers, insulating oil analysis, thermal image measurement, and corona discharge diagnosis, etc., were performed by establishing relevant regulation. The result of analysis performed on the external appearance of a transformer to which an accident occurred, the internal insulation resistance and protection system, etc., showed that most of the analysis items were judged to be acceptable. However, it was found that the insulation characteristics between the primary winding and the enclosure, those between the ground and the secondary winding, and those between the primary and secondary windings were inappropriate due to an insulating oil leak caused by damage to the pressure relief valve. From the analysis of the acidity values measured over the past 5 years, it is thought that an increase in carbon dioxide (CO2) caused an increase in the temperature inside the transformer and the increase in the ethylene gas increased the possibility of ignition. Even though 17 years have passed since the transformer was installed, it was found that the system's design, manufacture, maintenance and management have been performed well and the insulating paper was in good condition, and that there was no trace of public access or vandalism. However, in the case of transformers to which accidents have occurred, a melted area between the upper and the intermediate bobbins of the W-phase secondary winding as well as between its intermediate and lower bobbins. It can be seen that a V-pattern was formed at the carbonized area of the transformer and that the depth of the carbonization is deeper at the upper side than the lower side. In addition, it was found that physical bending and deformation occurred inside the secondary winding due to non-uniform pressure while performing transformer winding work. Therefore, since it is obvious that the accident occurred due to a manufacturing defect (winding work defect), it is thought that the manufacturer of the transformer is responsible for the accident and that it is lawful for the manufacture to investigate and prove the concrete cause of the accident according to the Product Liability Law (PLL).

Characteristics Evaluation on Welding Metal Zones Welded with Inconel 625 Filler Metal to Cast Steel for Piston Crown Material

  • Jeong, Jae-Hyun;Moon, Kyung-Man;Lee, Sung-Yul;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.542-547
    • /
    • 2015
  • Since the oil price has been significantly jumped for several years, a heavy oil of low quality has been mainly used in the diesel engine of the merchant ship. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, Inconel 625 filler metal were welded with GTAW method in the cast steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. Furthermore, the corrosion current density of the weld metal zone revealed the lowest value, having the highest value of hardness. The corrosive products with red color and local corrosion like as a pitting corrosion were considerably observed at the base metal zone, while these morphologies were not wholly observed in the weld metal zone. In particular, the polarization characteristics such as impedance, polarization curve and cyclic voltammogran associated with corrosion resistance property were well in good agreement with each other. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the Inconel 625 electrode.