• 제목/요약/키워드: Gas Turbine Combustion

검색결과 413건 처리시간 0.029초

발전용 가스터빈 연소기의 천연가스 연소유동 해석 (Natural Gas Combustion Analysis in Power Generation Gas Turbine)

  • 김태호;최정열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.156-161
    • /
    • 2005
  • Two and Three dimensional numerical simulations have been carried out to understand the combustion characteristics of LNG-fueled gas turbine combustor for power generation. Focus of the study was given to the influences of different fuel composition of imported and domestic natural gases with the flow conditions selected from the gas turbine operation data. Reacting flow characteristics of the swirl stabilized natural gas combustor were understood from the comparison of the two-dimensional and three-dimensional results. The thermal influences of different natural gases were very small and the fuel composition and flow rate were considered to be tuned well.

  • PDF

연소전 처리를 이용한 탄소포집이 가스터빈 복합화력 플랜트의 성능에 미치는 영향 (Effect of Carbon Capture Using Pre-combustion Technology on the Performance of Gas Turbine Combined Cycle)

  • 윤석영;안지호;최병선;김동섭
    • 한국수소및신에너지학회논문집
    • /
    • 제27권5호
    • /
    • pp.571-580
    • /
    • 2016
  • In this paper, performance of the gas turbine combined cycle(GTCC) using pre-combustion carbon capture technology was comparatively analysed. Steam reforming and autothermal reforming were used. In the latter, two different methods were adopted to supply oxygen for the reforming process. One is to extract air form gas turbine compressor (air blowing) and the other is to supply oxygen directly from air separation unit ($O_2$ blowing). To separate $CO_2$ from the reformed gas, the chemical absorption system using MEA solution was used. The net cycle efficiency of the system adopting $O_2$ blown autothermal reforming was higher than the other two systems. The system using air blown autothermal reforming exhibited the largest net cycle power output. In addition to the performance analysis, the influence of fuel reforming and carbon capture on the operating condition of the gas turbine and the necessity of turbine re-design were investigated.

촉매연소의 신기술 동향 (Status and perspectives of the advanced catalytic combustion)

  • 강성규
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.299-308
    • /
    • 2003
  • This paper provides a review of the status and of the perspectives of advanced catalytic combustion for ultra clean combustion of gas turbines and for industrial combustors. The development of catalytic materials and their combustion techniques for gas turbines are briefly reported. The fuel-rich approaches to catalytic combustion are mentioned for a new technology of thermal- and fuel-NOx control. The fuel-rich catalytic combustion are also applicable to the combustor of ceramic gas turbine, and to the combustion of biomess and municipal waste sludge. Some extended technologies of combustion synthesis are introduced for the synthesis of carbon nanotube and of Perovskite combustion catalysts

  • PDF

희박예혼합 마이크로 가스터빈 연소기 형상에 따른 연소특성 및 NOx 배기특성에 관한연구 (Effect of the Combustor Geometries on Combustion and NOx Emission Characteristics in a Lean Premixed Micro Gas Turbine)

  • 최민성;원온누리;김민국;나종문;최경민;김덕줄
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.229-231
    • /
    • 2012
  • A numerical analysis of a lean premixed combustor in a micro gas turbine was carried out to investigate the correlation between the turbulent mixing and emission characteristics on the combustor geometries. The interaction between the burners, by flow direction and momentum, significantly influenced on the turbulent mixing and combustion characteristics. The vortex which was generated by thermal expansion was observed during the combustion process, this was distinguished from the combustor geometries. The results showed that these characteristics can affect the NOx emission.

  • PDF

가스터빈과 순산소 연소를 적용한 발전시스템의 성능해석 (Performance Analysis on Gas Turbine based Oxy-fuel Combustion Power Plants)

  • 이영덕;이상민;박준홍;유상석;안국영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3169-3174
    • /
    • 2008
  • Future power plants will be required to adopt some type of carbon capture and storage (CCS) technologies to reduce their CO2 emissions. One of distinguished CCS techniques expected to resolve the green house effect is to apply the oxy-fuel combustion technique to power plant, and a lot of research/demonstration programs have been going on in the world. In this paper, CO2-capturing power plants based on gas turbine and oxy-fuel combustion are investigated over several types of configurations. As a prior step, simulation model for 500 MW-class combined cycle power plant was set and was used as a reference case. The efficiencies of several power plants was compared and the advantages and disadvanteges was investigated.

  • PDF

가스터빈 연소기의 성능평가 (The Performance Evaluation of a Gas Turbine Combustor)

  • 안국영;김한석;안진혁;배형수
    • 대한기계학회논문집B
    • /
    • 제24권10호
    • /
    • pp.1294-1299
    • /
    • 2000
  • The combustion characteristics have been investigated to develop the 50 kW-class gas turbine combustor. The combustor design program was developed and applied to design this combustor. The combustion air which has the temperature of 45, 200, $300^{\circ}C$ were supplied to combustor for elucidating the effect of inlet air temperature on CO, NOx emissions and flame temperature. The exit temperature and NO were increased and CO was decreased with increasing inlet air temperature. Also, the effect of equivalence ratio was considered to verify the combustor performance. The emissions of CO and NO with inlet air temperature can be analyzed qualitatively by measuring the temperature inside the combustor. The combustion performance with fuel schedule was evaluated to get the informations of the starting and part loading process of gas turbine. The combustion was stable above the equivalence ratio of 0.18. The pattern factor which is the important parameter of combustor performance was satisfied with the design criterion. Consequently the combustor was proved to meet the performance goal required for the target gas turbine system.

모델 가스터빈 연소기내의 자발 불안정성에 관한 실험적 연구 (An Experimental Study on the Self-excited Instabilities in Model Gas Turbine Combustor)

  • 이민철;홍정구;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.197-205
    • /
    • 2004
  • Most of gas turbines is operated by the type of dry premixed combustion to reduce NOx emission and economize fuel consumption. However this type operation, combustion induced instability brought failure problems cause by high pressure and heat release fluctuations. Though there has been lots of studies since Lord Rayleigh to understand this instability mechanism and control the instabilities, none of them made matters clear. In order to understand the instability phenomena, a simple experimental study with dump combustor was conducted at the moderate pressure and ambient temperature conditions. From this model gas turbine combustor self-excited instabilities at the resonance mode(200Hz) and bulk mode(10Hz) were occurred and observed at the three points of view; pressure, heat release and equivalence ratio which are acquired by peizo-electric transducer, HICCD camera and acetone LIF respectively. From this results we could see the instability mechanism clear with the account of time scale analysis which explained by the propagation of pressure wave to the upward of mixture stream and convectional transfer of the equivalence ratio fluctuation by this pressure fluctuation.

  • PDF

연료-공기 비혼합도가 희박예혼합 연소 특성에 미치는 영향 (Effects of Fuel-Air Unmixedness on Lean Premixed Combustion Characteristics)

  • 김대현;이종호;전충환;장영준
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.133-139
    • /
    • 2002
  • The lean premixed technique has been proven very efficient in reducing NOx emissions from gas turbine combustors. However combustion instability is susceptible to occur in lean premixed combustor. So laboratory-scale dump combustor was used to understanding the underlying mechanisms causing combustion instabilities. In this study, tests were conducted at atmospheric pressure and inlet air was up to $360^{\circ}C$ with natural gas. The observed instability was a longitudinal mode with a frequency of ${\sim}341.8Hz$. At selected unstable conditions, phase-resolved OH chemiluminescence images were captured to investigate flame structure with various equivalence ratio. Combustion instability was observed to occur at higher value of equivalence ratio(>0.69). This study was performed to investigate the effects of equivalence ratio and fuel split measuring NOx and acoustic wave. The results reveal the effect of fuel-air unmixedness on lean premixed combustor.

  • PDF

화염 전달함수 및 DMD 기법을 이용한 모형 가스터빈의 연소불안정성 평가 (Evaluation of Combustion Instability in a Model Gas Turbine Adopting Flame Transfer Function and Dynamic Mode Decomposition)

  • 손진우;손채훈;윤지수;윤영빈
    • 한국연소학회지
    • /
    • 제22권2호
    • /
    • pp.1-8
    • /
    • 2017
  • To evaluate the combustion instability of a gas turbine combustor, the DMD technique was applied. The mode frequency results for each fuel composition were compared with FFT(Fast Fourier Transform) results. The damping coefficient, which is a quantitative parameter for combustion instability, was evaluated for 5 experimental cases. The flame transfer function (FTF) was calculated in the most unstable test case. In deriving the FTF, gain and phase were calculated using DMD technique. As a result of the analysis of the OH radical perturbation of the DMD, the heat release fluctuation was the highest at 100 Hz, at which the highest value of gain is observed. The frequency of FFT and FTF were different. In order to clarify the reason for this, FTF for various resonance frequencies was performed and it shows that the pattern of gain was similar to FFT.

예혼합 희박 연소기의 연소특성에 관한 연구 (Study on the Combustion Characteristics of a Lean-Premixed Combustor)

  • 김한석;임암호;안국영;이상민
    • 한국연소학회지
    • /
    • 제9권1호
    • /
    • pp.25-31
    • /
    • 2004
  • Various types of the air/fuel pre-mixer have been designed and tested to investigate the combustion characteristics of the lean-premixed gas turbine combustor, such as NO emission and flame stability. One type of the pre-mixers has been selected and installed to a 70 kW lean-premixed gas turbine combustor. The concentrations of CO and NO were measured with varying equivalence ratios in the combustion chamber at ambient pressure. The result shows that the emissions of CO and NO are heavily affected by the shape of the pre-mixer. The NO and CO emissions decreased, as the mixing ratio of air and fuel increased. In addition, the NO emission of the lean-premixed low NOx combustor is more dependent on the equivalence ratio than that of the conventional combustor.

  • PDF