• Title/Summary/Keyword: Gas Transportation

Search Result 685, Processing Time 0.035 seconds

Determination of fuel marker in petroleum products using GC-MS (GC-MS를 이용한 석유제품 중의 식별제 분석)

  • Youn, Ju Min;Doe, Jin Woo;Yim, Eui Soon;Lee, Jung Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1073-1080
    • /
    • 2018
  • There are several types of petroleum products used for the fuel oil, according to their respective quality standards, grades and usage. Depending on the degree of oil tax rate by country, even the same petroleum products will have price gap. The illegal mixing of cheap petroleum products, which are subject to the lower tax rate, with relatively expensive transportation fuel causes problems such as tax evasion, environmental pollution and vehicle breakdown. In order to prevent illicit production and mixing of these different petroleum products, a small amount of markers are legally added to specific petroleum products. In Korea, markers are introduced and used to prevent illegal activity that kerosene used as fuel for house and commercial boiler are mixed with automotive diesel fuels, and marker contents are analyzed to use UV-Vis spectrophotometer and high performance liquid chromatography (HPLC). In this study, we have developed a method to qualitatively and quantitatively determine the marker added to petroleum products by gas chromatography-mass spectrometry (GC-MS) without adding developing reagent or sample pre-treatments.

Analysis of Electric Vehicle's Environmental Benefits from the Perspective of Energy Transition in Korea (에너지 전환정책에 따른 전기자동차의 환경편익 추정연구)

  • Jeon, Hocheol
    • Environmental and Resource Economics Review
    • /
    • v.28 no.2
    • /
    • pp.307-326
    • /
    • 2019
  • The electric vehicle is a representative measure to reduce greenhouse gas and local air pollutants in the transportation sector. Most countries provide purchase subsidies and tax reductions to promote electric vehicle sales. The electric vehicles have been considered as zero-emission vehicles(ZEV) in light of the fact that there has been no pollutant emission during driving. However, recent studies have pointed out that the pollutant emitted from the process of generating electricity used for charging the electric vehicles need to be treated as emissions of the electric vehicles. Furthermore, the environmental benefits of electric vehicle replacing the internal combustion vehicle vary with the power mix. In line with the recent studies, this study analyzes the impact of electric vehicles based on the current power mix and future energy transition scenarios in Korea. To estimate the precise air pollutants emission profile, this study uses hourly electricity generation and TMS emission data for each power plant from 2015 to 2016. The estimation results show that the electric vehicles under the current power mix generate the environmental benefits of only -0.41~10.83 won/km. Also, we find that the environmental benefit of electric vehicle will significantly increase only when the ratio of the coal-fired power plant is reduced to a considerable extent.

Analysis of Components to Determine Illegal Premium Gasoline (가짜 고급휘발유 판정을 위한 성분 분석)

  • Lim, Young-Kwan;Kang, Byung-Seok;Lee, Bo-O-Mi;Park, So-Hwi;Park, Jang-Min;Go, Young-Hoon;Kim, Seung-Tae;Kang, Dea-Hyuk
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.232-239
    • /
    • 2021
  • Petroleum is the most consumed energy source in Korea with a usage rate of 38.7% among the available primary energy sources. The price of liquid petroleum products in Korea includes taxes such as transportation·environment·energy tax. Thus, illegal production and distribution of liquid petroleum is widespread because of its huge price difference from that of the normal product and its tax-free nature. Generally, the illegal petroleum product is produced by mixing liquid petroleum with other similar petroleum alternatives. The two kinds of gasoline, common gasoline and premium gasoline, are being distributed in Korea. The premium gasoline is often adulterated with cheaper common gasoline that lowers the octane number of gasoline. It is possible to distinguish them with their color difference, green and yellow for different grade gasoline. However, when small volume of common gasoline is added to premium gasoline, it is difficult to determine whether premium gasoline contained common grade or not. In this study, we inspect gasoline, which is illegally produced by mixing common gasoline to premium gasoline. When the ratio of mixing common gasoline is increased, premium gasoline shows decreasing absorbance at 600 nm and 650 nm under UV-Vis spectrometer. Moreover, the detected intensity (mV·s) of green dye in high performance liquid chromatography (HPLC) was decreased by common gasoline under 0.99 correlation value. The more the common gasoline is mixed, the more olefin and naphthene are detected by gas chromatography. In addition, trimethyl pentane as octane improver, paraffin and toluene are decreased by common gasoline mixing. The findings of this study suggests that illegal petroleum can be identified by analysis of components and simulated samples.

Comparison of Construction Cost Applied by RC and PC Construction Method for Apartment House and Establishment of OSC Economic Analysis Framework (공동주택 RC 및 PC공법 적용 공사비 비교 및 OSC의 포괄적 경제성 분석 프레임워크 구축)

  • Yun, Won-Gun;Bae, Byung-Yun;Kang, Tai-Kyung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.6
    • /
    • pp.30-42
    • /
    • 2022
  • OSC is a type of supply chain and value chain that spans the entire process of construction production (planning, design, construction, maintenance, etc.). It is a method of producing the final object by manufacturing it in a factory, transporting it to the site, installing and construction. This research as is the construction cost was compared for each case A, which applied the PC method, and case B, which applied the RC method. In the case of applying the PC method (excluding the PC design cost), compared to the case where only the RC method was applied, the frame construction cost per unit quantity (m3) increased by about 70% (50% based on the total RC construction type). Of the total frame construction cost of PC method application, PC accounted for 90.2%, 'PC manufacturing cost' 54.8%, 'PC assembly cost' 28.5%, and 'transportation cost' accounted for 6.89%. Also a decision-making framework that can consider both costs and benefits was established. In the case of benefits, the construction period, defect repair, disaster occurrence, energy efficiency, noise/dust/waste, and greenhouse gas emission indicators reflecting OSC technical advantages were presented. It can contribute to providing a basis for helping decision-making on the introduction of PC apartment houses using OSC.

A study on process optimization of diffusion process for realization of high voltage power devices (고전압 전력반도체 소자 구현을 위한 확산 공정 최적화에 대한 연구)

  • Kim, Bong-Hwan;Kim, Duck-Youl;Lee, Haeng-Ja;Choi, Gyu-Cheol;Chang, Sang-Mok
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.227-231
    • /
    • 2022
  • The demand for high-voltage power devices is rising in various industries, but especially in the transportation industry due to autonomous driving and electric vehicles. IGBT module parts of 3.3 kV or more are used in the power propulsion control device of electric vehicles, and the procurement of these parts for new construction and maintenance is increasing every year. In addition, research to optimize high-voltage IGBT parts is urgently required to overcome their very high technology entry barrier. For the development of high-voltage IGBT devices over 3.3 kV, the resistivity range setting of the wafer and the optimal conditions for major unit processes are important variables. Among the manufacturing processes to secure the optimal junction depth, the optimization of the diffusion process, which is one step of the unit process, was examined. In the diffusion process, the type of gas injected, the injection time, and the injection temperature are the main variables. In this study, the range of wafer resistance (Ω cm) was set for the development of high voltage IGBT devices through unit process simulation. Additionally, the well drive in (WDR) condition optimization of the diffusion process according to temperature was studied. The junction depth was 7.4 to7.5 ㎛ for a ring pattern width of 23.5 to25.87 ㎛, which can be optimized for supporting 3.3 kV high voltage power devices.

Life Cycle Assessment (LCA) of the Wind Turbine : A case study of Korea Yeongdeok Wind Farm (한국 영덕 풍력단지 사례 연구를 통한 풍력 발전의 환경 영향 평가)

  • Jun Heon Lee;Jun Hyung Ryu
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.142-154
    • /
    • 2023
  • As the importance of the environment has been recognized worldwide, the need to calculate and reduce carbon emissions has been drawing an increasing attention throughout various industrial sections. Thereby the discipline of LCA (Life Cycle Assessment) involving raw material preparation, production processes, transportation and installation has been established. There is a clear research gap between the need and the practice for Korean Case of renewable energy industry, particularly wind power. To bridge the gap, this study conducted LCA research on wind power generation in the Korean area of Yeongdeok, an example of a domestic onshor wind power complex using SimaPro, which is the most widely used LCA system. As a result of the study, the energy recovery period (EPT) of one wind turbine is about 10 months, and the GHG emitted to generate power of 1 kwh is 15 g CO2/kWh, which is competitive compared to other energy sources. In the environmental impact assessment by component, the results showed that the tower of wind turbines had the greatest impact on various environmental impact sectors. The experience gained in this study can be further used in strengthening the introduction of renewable energy and reducing the carbon emission in line with reducing climate change.

Difference in Freshness of Soybean Sprouts as Affected by $\textrm{CO}_2$ Concentration and Postharvest Storage Temperature (콩나물 재배과정 중 기체 조성과 수확 후 저장온도에 따른 선도 변화)

  • 배경근;남승우;김경남;황영현
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.172-178
    • /
    • 2004
  • When soybean sprouts aye grown in the closed condition (where the ratio of $\textrm{O}_2$ and $\textrm{CO}_2$ is 7 : 3), amount of $\textrm{CO}_2$ is increased and $\textrm{O}_2$ is decreased with the passage of time. At the same time, the amount of ethylene is automatically increased. By increasing the concentration of ethylene gas up to 0.5-1.0 ppm in the growth room, the length of sprouts was restricted to 6-7 cm and the thickness of sprouts was increased to 2.70$\pm$0.30 mm. The production of good quality sprouts which were fat and short was possible without application of any growth regulators such as indole-3-acetic acid known to have accumulation problem in humane body. To maintain the freshness during the transportation and prevent sprouts from rotting and bad smell at market, cold storage at 2-$5^{\circ}$ and airtightness which will restrict photosynthesis and respiration (higher than $10^{\circ}$) are needed. The freshness of sprouts is depended on the increase of $\textrm{CO}_2$ and the depletion of $\textrm{O}_2$ in the package. When the sprouts were stored below 1$0^{\circ}C$ (preferably below 8$^{\circ}C$), the concentration of $\textrm{CO}_2$ in the package remained below 30% for more than 60 hours, which was possible to keep sprouts in freshness without any offensive odor, But sprouts were maintained at $13^{\circ}$ for more than 25 hours, the concentration of $\textrm{CO}_2$ increased over 30% and produced an offensive odor. The little amount of $\textrm{O}_2$ gas was existing for 30 hours at $5^{\circ}$ but it was disappeared completely within 7 hours over $10^{\circ}$ and the sprouts became rot and produced severe offensive odor.

Suggestion for Technology Development and Commercialization Strategy of CO2 Capture and Storage in Korea (한국 이산화탄소 포집 및 저장 기술개발 및 상용화 추진 전략 제안)

  • Kwon, Yi Kyun;Shinn, Young Jae
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.381-392
    • /
    • 2018
  • This study examines strategies and implementation plans for commercializing $CO_2$ capture and storage, which is an effective method to achieve the national goal of reducing greenhouse gas. In order to secure cost-efficient business model of $CO_2$ capture and storage, we propose four key strategies, including 1) urgent need to select a large-scale storage site and to estimate realistic storage capacity, 2) minimization of source-to-sink distance, 3) cost-effectiveness through technology innovation, and 4) policy implementation to secure public interest and to encourage private sector participation. Based on these strategies, the implementation plans must be designed for enabling $CO_2$ capture and storage to be commercialized until 2030. It is desirable to make those plans in which large-scale demonstration and subsequent commercial projects share a single storage site. In addition, the plans must be able to deliver step-wised targets and assessment processes to decide if the project will move to the next stage or not. The main target of stage 1 (2019 ~ 2021) is that the large-scale storage site will be selected and post-combustion capture technology will be upgraded and commercialized. The site selection, which is prerequisite to forward to the next stage, will be made through exploratory drilling and investigation for candidate sites. The commercial-scale applicability of the capture technology must be ensured at this stage. Stage 2 (2022 ~ 2025) aims design and construction of facility and infrastructure for successful large-scale demonstration (million tons of $CO_2$ per year), i.e., large-scale $CO_2$ capture, transportation, and storage. Based on the achievement of the demonstration project and the maturity of carbon market at the end of stage 2, it is necessary to decide whether to enter commercialization of $CO_2$ capture and storage. If the commercialization project is decided, it will be possible to capture and storage 4 million tons of $CO_2$ per year by the private sector in stage 3 (2026 ~ 2030). The existing facility, infrastructure, and capture plant will be upgraded and supplemented, which allows the commercialization project to be cost-effective.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2004 and 2005 - (공기조화, 냉동 분야의 최근 연구 동향 -2004년 및 2005년 학회지 논문에 대한 종합적 고찰-)

  • Choi, Yong-Don;Kang, Yong-Tae;Kim, Nae-Hyun;Kim, Man-Hoe;Park, Kyoung-Kuhn;Park, Byung-Yoon;Park, Jin-Chul;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.94-131
    • /
    • 2007
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2004 and 2005 has been done. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD and flow visualization(PIV, PTV and LDV methods) technologies were widely applied for developing facilities and their systems. (2) The research trends of the previous two yews are surveyed as groups of natural convection, forced convection, electronic cooling, heat transfer enhancement, frosting and defrosting, thermal properties, etc. New research topics introduced include natural convection heat transfer enhancement using nanofluid, supercritical cooling performance or oil miscibility of $CO_2$, enthalpy heat exchanger for heat recovery, heat transfer enhancement in a plate heat exchanger using fluid resonance. (3) The literature for the last two years($2004{\sim}2005$) is reviewed in the areas of heat pump, ice and water storage, cycle analysis and reused energy including geothermal, solar and unused energy). The research on cycle analysis and experiments for $CO_2$ was extensively carried out to replace the Ozone depleting and global warming refrigerants such as HFC and HCFC refrigerants. From the year of 2005, the Gas Engine Heat Pump(GHP) has been paid attention from the viewpoint of the gas cooling application. The heat pipe was focused on the performance improvement by the parametric analysis and the heat recovery applications. The storage systems were studied on the performance enhancement of the storage tank and cost analysis for heating and cooling applications. In the area of unused energy, the hybrid systems were extensively introduced and the life cycle cost analysis(LCCA) for the unused energy systems was also intensively carried out. (4) Recent studies of various refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and of alternative refrigerants including carbon dioxide. Efficiency of various compressors and expansion devices are also dealt with for better modeling and, in particular, performance improvement. Thermoelectric module and cooling systems are analyzed theoretically and experimentally. (5) According to the review of recent studies on ventilation systems, an appropriate ventilation systems including machenical and natural are required to satisfied the level of IAQ. Also, an recent studies on air-conditioning and absorption refrigeration systems, it has mainly focused on distribution and dehumidification of indoor air to improve the performance were carried out. (6) Based on a review of recent studies on indoor environment and building service systems, it is noticed that research issues have mainly focused on optimal thermal comfort, improvement of indoor air Quality and many innovative systems such as air-barrier type perimeter-less system with UFAC, radiant floor heating and cooling system and etc. New approaches are highlighted for improving indoor environmental condition as well as minimizing energy consumption, various activities of building control and operation strategy and energy performance analysis for economic evaluation.

A Study for Activation Measure of Climate Change Mitigation Movement - A Case Study of Green Start Movement - (기후변화 완화 활동 활성화 방안에 관한 연구 - 그린스타트 운동을 중심으로 -)

  • Cho, Sung Heum;Lee, Sang Hoon;Moon, Tae Hoon;Choi, Bong Seok;Park, Na Hyun;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.5 no.2
    • /
    • pp.95-107
    • /
    • 2014
  • The 'Green Start Movement' is a practical movement of green living to efficiently reduce the greenhouse gases originating from non-industrial fields such as household, commerce, transportation, etc. for the 'materialization of a low carbon society through green growth (Low Carbon, Green Korea)'. When the new government took office, following the Lee Myeongbak Administration that had presented 'Low Carbon, Green Growth' as a national vision, it was required to set up the direction of the practical movement of green life to respond to climate change persistently and stably as well as to evaluate the performance of the green start movement over the past 5 years. A questionnaire survey was administered to a total of 265 persons including public servants, members of environmental and non-environmental NGOs, participants of the green start movement and professionals. In the results of the questionnaire survey, many opinions have indicated that the awareness of the green start movement is increasing and the green start movement has had a positive impact on individual behavior and group behavior in terms of green living. The result shows, however, that the environmental NGOs don't cooperate sufficiently to create a 'green living' effect on a national scale. Action needs to be taken on the community level in order to generate a culture of environmental responsibility. The national administration office of the Green Start Movement Network should play the leading role between the government and environmental NGOs. The Green Start National Network should have greater autonomy and governance of the network needs to be restructured in order to work effectively. Also the Green Start Movement should identify specific local characteristics to support activities that reduce greenhouse gas emissions. Best practices can be shared to reduce greenhouse gas emissions by a substantial amount.