• Title/Summary/Keyword: Gas Sensor Array

Search Result 94, Processing Time 0.022 seconds

Analysis of COPD Patient's Exhaled Breath Using Sensor Array (센서 어레이를 사용한 COPD 환자의 호기분석)

  • Yu, Joon-Boo;Lee, Shin-Yup;Jeon, Jin-Young;Byun, Hyung-Gi;Lim, Jeong-Ok
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.219-222
    • /
    • 2013
  • The exhaled breath contains gases generated from human body. When disease occurs in the body, exhaled breath may include gas components released from disease metabolism. If we can find specific elements through analysis of the exhaled gases, this approach is an effective way to diagnose the disease. The lung function has a close relationship with exhalation. Exhaled gases from COPD (Chronic Obstructive Pulmonary Disease) patients can be analyzed by gas chromatography-mass spectroscopy (GC-MS) and a gas sensor system. The exhaled breath for healthy person and COPD patients had different components. Significantly more benzendicarboxylic acid was detected from COPD patients than in healthy persons. In addition, patients had a variety of decane. Phosphorous compounds with different isomers were detected from patients. The results obtained by gas sensor system were processed by PCA (Principal Component Analysis). The PCA results revealed distinct difference between the patients and healthy people.

A development of neural-network based gas recognition system using sensor array (센서 어레이를 이용한 신경망 기반의 가스 인식 시스템 개발)

  • 김영진;정종혁;강상욱;조영창
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.356-360
    • /
    • 2002
  • Polluting the air with such pollutants as CO, H₂S and SO₂, industrial development huts increased the danger of gas toxication. Futhermore, as the: living standard goes higher, the consumption of explosive hydrocarbonic gases such as butane(C₄H/sub 10/) or propane(C₃H/sub 8/) has been soaring, which results in the danger of a gas explosion. As measures to cope with such dangers, the development of highly sensitive gas sensors, gas detectors adopting gas-sensing technologies, and gas recognition systems are urgently required. The objective of the present research is to develop a gas recognition system that is capable of identifying specific types of selected gases by formulating a semiconductor-typed gas sensor array, which not only improves the selectivity of semiconductor-typed gas sensors but also minimizes the erect of drifts on a single sensor signal, and applying the input pattern data of gases detected by the array to a neural network.

  • PDF

The Redundancy Reduction Using Fuzzy C-means Clustering and Cosine Similarity on a Very Large Gas Sensor Array for Mimicking Biological Olfaction (생물학적 후각 시스템을 모방한 대규모 가스 센서 어레이에서 코사인 유사도와 퍼지 클러스터링을 이용한 중복도 제거 방법)

  • Kim, Jeong-Do;Kim, Jung-Ju;Park, Sung-Dae;Byun, Hyung-Gi;Persaud, K.C.;Lim, Seung-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.59-67
    • /
    • 2012
  • It was reported that the latest sensor technology allow an 65536 conductive polymer sensor array to be made with broad but overlapping selectivity to different families of chemicals emulating the characteristics found in biological olfaction. However, the supernumerary redundancy always accompanies great error and risk as well as an inordinate amount of computation time and local minima in signal processing, e.g. neural networks. In this paper, we propose a new method to reduce the number of sensor for analysis by reducing redundancy between sensors and by removing unstable sensors using the cosine similarity method and to decide on representative sensor using FCM(Fuzzy C-Means) algorithm. The representative sensors can be just used in analyzing. And, we introduce DWT(Discrete Wavelet Transform) for data compression in the time domain as preprocessing. Throughout experimental trials, we have done a comparative analysis between gas sensor data with and without reduced redundancy. The possibility and superiority of the proposed methods are confirmed through experiments.

Development of High Sensitive Integrated Dual Sensor to Detect Harmful Exhaust Gas and Odor for the Automotive (악취분별능력을 가진 자동차용 고기능 듀얼타입 집적형 유해가스 유입차단센서 개발)

  • Chung, Wan-Young;Shim, Chang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.616-623
    • /
    • 2007
  • A dual micro gas sensor array was fabricated using nano sized $SnO_2$ thin films which had good sensitivities to CO and combustible gases, or $H_2S$ gas for air quality sensors in automobile. The already existed air quality sensor detects oxidizing gases and reducing gases, the air quality sensor(AQS), located near the fresh air inlet detected the harmful gases, the fresh air inlet door/ventilation flap was closed to reduce the amount of pollution entering the vehicle cabin through HVAC(heating, ventilating, and air conditioning) system. In this study, to make $SnO_2$ thin film AQS sensor, thin tin metal layer between 1000 and $2000{\AA}$ thick was oxidized between 600 and $800^{\circ}C$ by thermal oxidation. The gas sensing layers such as $SnO_2$, $SnO_2$(pt) and $SnO_2$(+CuO) were patterned by metal shadow mask for simple fabrication process on the silicon substrate. The micro gas sensors with $SnO_2$(+Pt) and $SnO_2$(CuO) showed good selectivity to CO gas among reducing gases and good sensitivity to $H_2S$ that is main component of bad odor, separately.

Investigation of Chemical Sensor Array Optimization Methods for DADSS

  • Choi, Jang-Sik;Jeon, Jin-Young;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • Nowadays, most major automobile manufacturers are very interested, and actively involved, in developing driver alcohol detection system for safety (DADSS) that serves to prevent driving under the influence. DADSS measures the blood alcohol concentration (BAC) from the driver's breath and limits the ignition of the engine of the vehicle if the BAC exceeds the reference value. In this study, to optimize the sensor array of the DADSS, we selected sensors by using three different methods, configured the sensor arrays, and then compared their performance. The Wilks' lambda, stepwise elimination and filter method (using a principal component) were used as the sensor selection methods [2,3]. We compared the performance of the arrays, by using the selectivity and sensitivity as criteria, and Sammon mapping for the analysis of the cluster type of each gas. The sensor array configured by using the stepwise elimination method exhibited the highest sensitivity and selectivity and yielded the best visual result after Sammon mapping.

Study for Field Inspection of Phase-Array Ultrasonic for Electro-fusion Joints of Polyethylene Gas Pipes (폴리에틸렌 가스배관 전기융착부 위상배열초음파검사 현장사례 연구)

  • Kil Seong-Hee;Kwon Jeong-Rock;Park Kyo-Shik
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.61-67
    • /
    • 2006
  • We developed the ultrasonic phased array technique for obtaining ultrasonic images of electrofusion joints of polyethylene piping. And we inspected 4 cases at fields with this technique. First case is for the 300 mm diameter polyethylene electrofusion joint by using 3.5 MHz phased array sensor, second is for the 350 mm diameter saddle electrofusion joint, third is for the 400 mm diameter electrofusion joints and the last one is for the 400 mm diameter piping joints which will be used at 300 kPa suppling pressure.

  • PDF

Fabrication of oxide semiconductor thin film gas sensor array (산화물 반도체 박막 가스센서 어레이의 제조)

  • 이규정;김석환;허창우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.705-711
    • /
    • 2000
  • A thin film oxide semiconductor micro gas sensor array which shows only 60 mW of power consumption at an operating temperature of $300^{\circ}C$ has been fabricated using microfabrication and micromachining techniques. Excellent thermal insulation of the membrane is achieved by the use of a double-layer structure of $0.1\mum\; thick\; Si_3N_4 \;and\; 1 \mum$ thick phosphosilicate glass (PSG) prepared by low-pressure chemical-vapor deposition (LPCVD) and atmospheric-pressure chemical-vapor deposition (APCVD), respectively. The sensor array consists of such thin film oxide semiconductor sensing materials as 1 wt.% Pd-doped $SnO_2,\; 6 wt.% A1_2O_3-doped\; ZnO,\; WO_3$/ and ZnO. Baseline resistances of the four sensing materials were found to be stable after the aging for three days at $300^{\circ}C$. The thin film oxide semiconductor micro gas sensor array exhibited resistance changes usable for subsequent data processing upon exposure to various gases and the sensitivity strongly depended on the sensing layer materials.

  • PDF

Fabrication and yield improvement of oxide semiconductor thin film gas sensor array (산화물 반도체 박막 가스센서 어레이의 제조 및 수율 개선)

  • 이규정;류광렬;허창우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.315-322
    • /
    • 2002
  • A thin film oxide semiconductor micro gas sensor array which shows only 60㎽ of power consumption at an operating temperature of 30$0^{\circ}C$ has been fabricated using microfabrication and rnicrornachining techniques. Excellent thermal insulation of the membrane is achieved by the use of a double la! or structure of 0.1${\mu}{\textrm}{m}$ thick Si$_3$N$_4$ and 1${\mu}{\textrm}{m}$ thick phosphosilicate glass(PSG) prepared by low pressure chemical vapor deposition(LPCVD) and atmospheric-pressure chemical-vapor deposition(APCVD), respectively. The sensor way consists of such thin film oxide semiconductor sensing materials as 1wt.% Pd-doped SnO$_2$, 6wt.% AI$_2$O$_3$-doped ZnO, WO$_3$ and ZnO. The thin film oxide semiconductor micro gas sensor array exhibited resistance changes usable for subsequent data processing upon exposure to various gases and the sensitivity strongly depended on the sensing layer materials. Heater Part of the sensor structure has been modified in order to improve the process yield of the sensor, and as a result of modified heater structure improved process yield has been achieved.

Fabrication of low-stress silicon nitride film for application to biochemical sensor array

  • Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.357-361
    • /
    • 2005
  • Low-stress silicon nitride (LSN) thin films with embedded metal line have been developed as free standing structures to keep microspheres in proper locations and localized heat source for application to a chip-based sensor array for the simultaneous and near-real-time detection of multiple analytes in solution. The LSN film has been utilized as a structural material as well as a hard mask layer for wet anisotropic etching of silicon. The LSN was deposited by LPCVD (Low Pressure Chemical Vapor Deposition) process by varing the ratio of source gas flows. The residual stress of the LSN film was measured by laser curvature method. The residual stress of the LSN film is 6 times lower than that of the stoichiometric silicon nitride film. The test results showed that not only the LSN film but also the stack of LSN layers with embedded metal line could stand without notable deflection.

Surface acoustic wave gas sensors by utilizing the phase change (위상변화를 이용한 표면탄성파 가스센서)

  • Kim, Jin-Sang;Jung, Yong-Chul;Kang, Chong-Yun;Kim, Dal-Young;Nam, Chang-Woo;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.186-190
    • /
    • 2005
  • This paper describes the development of a surface acoustic wave gas sensor that is designed to detect volatile gas by monitering phase change of output signal as a function of time. The sensor consists of SAW oscillators with a center frequency of 100 MHz fabricated on $128^{\circ}$ Y-Z $LiNbO_{3}$ substrates. Experimental results, which show the phase change of output signal under the absorption of volatile gas onto sensors, are presented. The proposed sensor has the properties of high sensitivity compare to the conventional SAW gas sensor and chemical selectivity. Thus, it is thought these results are applicable for use in sensor array of an high performance electronic nose system.