• Title/Summary/Keyword: Gas Scrubber

Search Result 136, Processing Time 0.03 seconds

Development of an Energy MonItorIng System for Gas Scrubber (반도체 공정장비 Gas Scrubber의 에너지 모니터링 시스템개발)

  • Kim, Sun-Man;Im, Ik-Tea;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.13-17
    • /
    • 2011
  • We have developed a new energy-consuming monitoring system that has made it possible to measure the energy consumption of a gas scrubber, one of semiconductor processing equipments, and installed this system to the gas scrubber under operating at a manufacture site. Using this system, we have measured consumptions of electric power and processing gas consumed at standby to operating mode. In case of the gas scrubber, processing gas flows continuously into it at standby and operating mode. Therefore, if the electric power has been supplied, the processing gas can flows into the device for 24 hours. Moreover, at operating of gas scrubber, the amount of electricity consumption is 5 kWh. At Standby of gas scrubber, it spends 3kwh. It is certain that the energy consumption is greater at operating mode than at standby mode. The carbon emission rates from 24 hour gas scrubber operation are 236 $kgCO_2$/day of $N_2$, 57 $kgCO_2$/day of electric power and 0.001 $kgCO_2$/day of cooling water. Most of carbon is emitted from $N_2$ gas and electric power consumption.

Removal Characteristics of Gaseous Contaminants by a Wet Scrubber with Different Packing Materials (충진제의 종류에 따른 습식 스크러버의 가스상 물질 제거특성)

  • Han, Bang-Woo;Kim, Hak-Joon;Kim, Yong-Jin;Han, Kyeong-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.744-751
    • /
    • 2007
  • Wet scrubber is widely used to remove toxic gaseous contaminants in various industries such as semi-conductor industry, display manufacturing industry and so on. In this study, to optimize a packed bed scrubber as one of typical wet scrubber size while keeping its performance, four different packing materials were investigated at different air flow rates, liquid-gas ratios and pH values. Ammonia, hydrochloric acid and hydrofluoric acid were used as test gases to characterize the scrubber performance. Gas removal efficiency increased as the packing size decreased, which resulted in the increase of specific surface area. The increase of air flow rate led to the decrease of gas removal efficiency, while the increase of liquid-gas ratio led to the increase of gas removal efficiency. For the case of $NH_3$ gas, lower pH, and for the cases of HCl and HF, higher pH contributed to higher gas removal efficiency. Gas removal efficiency of a wet scrubber increased in the order of HCl < $NH_3$ < HF according to its water solubility.

IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

  • Ali, Majid;Yan, Changqi;Sun, Zhongning;Gu, Haifeng;Wang, Junlong;Khurram, Mehboob
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.203-210
    • /
    • 2013
  • The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate ($Na2S_2O_3$) in water to remove the gaseous iodine ($I_2$) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of $0.99{\pm}0.001$ has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

Development of a Scrubber Wastewater Cleaning System to Improve Odor Removal Efficiency (악취저감 향상을 위한 스크러버 세정수 처리 시스템 개발연구)

  • Chung, Gu-Hoi;Im, Moon-Soon;Kim, Youn-Soo;Kim, Duk-Hyun
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.34-41
    • /
    • 2017
  • The scrubber wastewater should be replaced frequently to maintain efficiency. Most chemical companies consign scrubber wastewater, because there are no wastewater treatment facilities. So scrubber wastewater is not frequently replaced because of high treatment cost. For this reason, the most scrubber exhaust gas exceeds the odor emission limit or has a phenomenon that the odor intensity of exhaust gas becomes higher. Therefore we have developed a scrubber wastewater cleaning system consisting of filtration and adsorption processes. The scrubber wastewater cleaning system was applied two chemical companies. We evaluated the water quality and odor reduction effect before and after system application. As a result, scrubber wastewater quality improved by 50% or more, odor reduction efficiency of scrubber exhaust gas improved by 20% or more. And the total operating costs of the scrubber could be reduced by 40% or more.

Study on the Process Optimization for the Ethanol Scrubber (에탄올 스크러버의 공정 최적화에 대한 연구)

  • SANGGYUN NOH
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.4
    • /
    • pp.410-414
    • /
    • 2024
  • In this paper, scrubber modeling and optimization works have been performed for the removal of ethanol contained in the feed nitrogen gas. Ethanol content at scrubber top gas stream was reduced to 20 ppm in mole by contacting counter-currently with water as a solvent. Some of the liquid withdrawn at the scrubber bottom stream has been recycled to the scrubber in order to reduce the amount of waste water.

An Experiment on Particle Collection and Gas Removal in a 2-Stage Electrostatic Wet Scrubber (2단 정전식 세정집진기의 집진 및 가스제거 특성)

  • Yeo, Kuk-Hyun;Yoo, Kyung-Hoon;Son, Seung-Woo;Kim, Yoon-Shin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.745-752
    • /
    • 2006
  • DOS and NaCl aerosol particles were used to determine collection efficiencies of a 2-stage electrostatic wet scrubber with respect to particle size. The DOS and NaCl aerosols have geometric mean diameters of 0.1-3.0 urn, geometric standard deviations of $1.1{\sim}1.8$ and total number concentrations of $450{\sim}2,400\;particles/cm^3$. The tested operating variables for the electrostatic wet scrubber included air velocity and water injection rate. It was shown from the experimental results that particle collection efficiencies increased in the submicron particle size range when different polarities were applied on the water nozzle and corona wire, respectively. This increase in the collection efficiency is attributed to strong electrostatic attraction between the negative water droplets and positive submicron particles. The collection efficiencies also increased when water injection rate was increased or air velocity was decreased. Meanwhile, the pressure drop across the wet scrubber decreased by 90% compared with the existing mechanical wet scrubber. Finally, ammonia gas was used to determine gas removal efficiencies. It was observed that the gas removal efficiencies increased when the air velocity was decreased or the water injection rate was increased.

Effects on Performance Characteristics of Diesel Engine by EGR system with Scrubber (Scrubber를 장착한 EGR 시스템이 디젤기관의 성능특성에 미치는 영향)

  • 임재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.184-191
    • /
    • 1999
  • Th effects of exhaust gas recirculation(EGR) on the characteristics of combustion exhaust emissions and specific fuel consumption(SFC) are experimentally investigated by four-cylin-der four-cycle and direct injection marine diesel engine. In order to reduce soot contents in the recirculated exhaust gas to intake system of the engines a novel diesel soot removal system with a cylinder-type scrubber which has water injector(4 nozzles in 1.0mm diameter)is specially designed and manufactured for the experi-mental system. The obtained results are as follows; The combustion pressure in cylinder is decreased and ignition is delayed with increasing EGR rate. The accumulated quantity of heat release is slightly decreased and the tendency of heat release rate is not constant. NOx and Soot emissions are decreased by maximum 7% and 540% with scrubber tan without scrubber in the range of experimental conditions. Those are increased at the lean burn area with increasing equivalence ration in the constant value of engine speed and EGR rate. Also those are decreased with increasing EGR rate in the constant value of engine speed and equivalence ratio.

  • PDF

Effect of Recirculated Exhaust Gas Temperature on Performance and Exhaust Emissions in Diesel Engines with Scrubber EGR System (스크러버형 EGR시스템 디젤기관의 성능 및 배기 배출물에 미치는 재순환 배기온도의 영향)

  • 배명환;하태용;류창성;하정호;박재윤
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.75-82
    • /
    • 2002
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle four-cylinder, swirl chamber type, water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas recirculation(EGR) control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions. And a novel diesel soot-removal device with a cylinder-type scrubber which has five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection, however, would be included within those of scrubber EGR system. In order to study the effect of intake mixture temperature, a intake mixture heating device which has five heating coils is made of a steel drum. It is found that the specific fuel consumption rate is considerably elevated by the increase of intake mixture temperature, and that NOx emissions are markedly decreased as EGR rates are increased and intake mixture temperature is dropped, while soot emissions are increased with increasing EGR rates and intake mixture temperature.

  • PDF

A Study on Effect of Intake Mixture Temperature upon Fuel Economy and Exhaust Emissions in Diesel Engines with a Scrubber EGR System

  • Bae, Myung--Whan;Ryu, Chang-Seong;Yoshihiro Mochimaru;Jeon, Hyo-Joong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.315-331
    • /
    • 2004
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle. four-cylinder. swirl chamber type. water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas Recirculation (EGR) control system for reducing $\textrm{NO}_{x}$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce $\textrm{NO}_{x}$ emissions. And a novel diesel soot-removal device of cylinder-type scrubber with five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection. however. would be included within those of scrubber EGR system. In order to survey the effects of cooled EGR and moisture on $\textrm{NO}_{x}$ and soot emissions. the intake mixtures of fresh air and recirculated exhaust gas are heated up using a heater with five heating coils equipped in a steel drum. It is found that intake and exhaust oxygen concentrations are decreased, especially at higher loads. as EGR rate and intake mixture temperature are increased at the same conditions of engine speed and load. and that $\textrm{NO}_{x}$ emissions are decreased. while soot emissions are increased owing to the decrease in intake and exhaust oxygen concentrations and the increase in equivalence ratio. Thus ond can conclude that $\textrm{NO}_{x}$ and soot emissions are considerably influenced by the cooled EGR.

A Study on Effect of Environmental Characteristics by Intake Mixture Temperature in Scrubber EGR System Diesel Engines

  • Bae, Myung-Whan;Ryu, Chang-Sung
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.100-111
    • /
    • 2002
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle, four-cylinder, swirl chamber type, water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas recirculation(EGR) control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce $NO_x$ emissions. And a novel diesel soot-removal device of cylinder-type scrubber with five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection, however, would be included within those of scrubber EGR system. In order to survey the effect of intake mixture temperature on performance and exhaust emissions, the intake mixtures of fresh air and recirculated exhaust gas are heated by a heating device with five heating coils made of a steel drum. It is found that the specific fuel consumption rate is considerably elevated by the increase of intake mixture temperature, and that $NO_x$ emissions are markedly decreased as EGR rates are increased and intake mixture temperature is dropped, while soot emissions are increased with increasing EGR rates and intake mixture temperature. Thus one can conclude that the performance and exhaust emissions are considerably influenced by the cooled EGR.

  • PDF