• Title/Summary/Keyword: Gas Safety

Search Result 2,917, Processing Time 0.049 seconds

Effect of Heat Treatment in Dried Lavers and Modified Processing (마른김에 대한 열처리 효과와 제조 공정 개선 시험)

  • Lee, Tae-Seek;Lee, Hee-Jung;Byun, Han-Seok;Kim, Ji-Hoe;Park, Mi-Jung;Park, Hi-Yun;Jung, Kyoo-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.6
    • /
    • pp.529-532
    • /
    • 2000
  • To establish a food safety of dried layer, heat treatment effect on the bacterial density of dried layers was investigated. And a modified process developing experiment for dried layer products using closing type drying oven was carried out. tittle bacterial density difference on the dried layer products were found before and after heat treatment at $90^{\circ}C$ for 6 hrs called Hwaip treatment having been used for long term storage. Direct or indirect heat treatment of dried lavers using gas burner and frying pan reduced about 1 to 3 log cycle of viable cell count from $10^8\;CFU/g\;to\;10^5\;CFU/g$. Heat treatment by direct surface contact type cooking machine being used in the market place for cooked dried layer products could reduce the viable cell count on the layer product from $2.2{\times}10^5{\~}5.2{\times}10^7\;CFU/g\;to\;7.0{\times}10^2{\~}5.0{\times}10^5\;CFU/g$, Ultraviolet irradiation (20 W, 30 cm) to one or both side of the dried laver products reduced the viable cell count from $2.2{\times}10^6\;CFU/g\;to\;8.0{\times}10^5\;CFU/g\;and\;2.0{\times}10^5\;CFU/g$, respectively. The viable cell count of the dried layer products produced by modified process using a closing type dryer was about $10^3\;CFU/g$ and lower 3 log cycle than that in the products collected in market place and made by open type dryer.

  • PDF

Fatty acid analysis and regulatory effects of citron (Citrus junos Sieb. ex TANAKA) seed oil on nitric oxide production, lipid accumulation, and leptin secretion (유자씨유의 지방산분석 및 Nitric Oxide 생성, 지방축적능, 렙틴분비 조절효과)

  • Kim, Tae Woo;Kim, Kyoung Kon;Kang, Yun Hwan;Kim, Dae Jung;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.47 no.4
    • /
    • pp.221-228
    • /
    • 2014
  • Purpose: Citron seed oil (CSO) has been reported to have high antioxidant activity. However, the composition and other biologically activities of CSO have not been reported. In this study, we confirmed the fatty acid composition of CSO, which may be beneficial to vascular disease and obesity. Methods: We investigated the oil composition of CSO using gas chromatography coupled with mass spectrometry (GC-MS) analysis, and cytotoxicity was confirmed by Cell Counting Kit-8 (CCK-8) assay. Nitric oxide (NO) production in human umbilical vein endothelial cells (HUVECs) was measured using Griess reagent, and lipid accumulation and leptin secretion in 3T3-L1 cells were measured by Oil-Red O staining and commercial ELISA kit, respectively. Results: GC-MS analysis indicated that CSO contains several components, including linoleic acid, oleic acid, palmitic acid, stearic acid, linolenic acid, palmitoleic acid, and arachidic acid. In physiological activity analysis, CSO did not induce cytotoxic effects in HUVECs and 3T3-L1 cells. Further, CSO significantly induced nitric oxide and leptin secretion as well as inhibited lipid accumulation. Conclusion: CSO increased NO release, inhibited lipid accumulation, and induced leptin secretion, suggesting it may be useful for the management of vessels and weight gain. Although further studies are required to investigate the safety and mechanism of action of CSO, our results show that the composition and physiological activity of CSO are sufficient for its use as functional edible oil.

Study on the Fire Risk Prediction Assessment due to Deterioration contact of combustible cables in Underground Common Utility Tunnels (지하공동구내 가연성케이블의 열화접촉으로 인한 화재위험성 예측평가)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.135-147
    • /
    • 2015
  • Recent underground common utility tunnels are underground facilities for jointly accommodating more than 2 kinds of air-conditioning and heating facilities, vacuum dust collector, information processing cables as well as electricity, telecommunications, waterworks, city gas, sewerage system required when citizens live their daily lives and facilities responsible for the central function of the country but it is difficult to cope with fire accidents quickly and hard to enter into common utility tunnels to extinguish a fire due to toxic gases and smoke generated when various cables are burnt. Thus, in the event of a fire, not only the nerve center of the country is paralyzed such as significant property damage and loss of communication etc. but citizen inconveniences are caused. Therefore, noticing that most fires break out by a short circuit due to electrical works and degradation contact due to combustible cables as the main causes of fires in domestic and foreign common utility tunnels fire cases that have occurred so far, the purpose of this paper is to scientifically analyze the behavior of a fire by producing the model of actual common utility tunnels and reproducing the fire. A fire experiment was conducted in a state that line type fixed temperature detector, fire door, connection deluge set and ventilation equipment are installed in underground common utility tunnels and transmission power distribution cables are coated with fire proof paints in a certain section and heating pipes are fire proof covered. As a result, in the case of Type II, the maximum temperature was measured as $932^{\circ}C$ and line type fixed temperature detector displayed the fire location exactly in the receiver at a constant temperature. And transmission power distribution cables painted with fire proof paints in a certain section, the case of Type III, were found not to be fire resistant and fire proof covered heating pipes to be fire resistant for about 30 minutes. Also, fire simulation was carried out by entering fire load during a real fire test and as a result, the maximum temperature is $943^{\circ}C$, almost identical with $932^{\circ}C$ during a real fire test. Therefore, it is considered that fire behaviour can be predicted by conducting fire simulation only with common utility tunnels fire load and result values of heat release rate, height of the smoke layer, concentration of O2, CO, CO2 etc. obtained by simulation are determined to be applied as the values during a real fire experiment. In the future, it is expected that more reliable information on domestic underground common utility tunnels fire accidents can be provided and it will contribute to construction and maintenance repair effectively and systematically by analyzing and accumulating experimental data on domestic underground common utility tunnels fire accidents built in this study and fire cases continuously every year and complementing laws and regulations and administration manuals etc.

Establishment of Safe Management Guideline Based on Uptake Pattern of Pesticide Residue from Soil by Radish (토양잔류 농약의 무 흡수양상 및 토양 안전관리기준 설정)

  • Hwang, Jeong-In;Kwak, Se-Yeon;Lee, Sang-Hyeob;Kang, Min-Su;Ryu, Jun-Sang;Kang, Ja-Gun;Jung, Hye-Hyeon;Hong, Sung-Hyeon;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.4
    • /
    • pp.278-285
    • /
    • 2016
  • BACKGROUND: Uptake patterns of ${\alpha}$-, ${\beta}$-isomers and sulfate metabolite of endosulfan (ED) by radishes grown in treated soils with ED concentrations of 2 and 10 mg/kg were investigated to establish soil management guidelines for ensuring the safety of radishes from ED residues. METHODS AND RESULTS: All samples of soils and radish plants separated into shoot and root parts were analyzed for ED residues using a gas-chromatography mass spectrophotometer, and the results were used to calculate the bioconcentration factor (BCF), indicating the ratio of ED concentrations between radishes and soils. During the experimental period, uptake and distribution rates of ED-sulfate in radishes were the highest, followed by ${\alpha}$- and ${\beta}$-ED. The BCF values to initial ED concentrations in soils were greater for root parts (0.0077 to 0.2345) than for shoot parts (0.0002 to 0.0429) and used to obtain regression equations by time. Long-term BCFs estimated by the obtained equations ($R^2$ of 0.86 to 1.00) were evaluated with the maximum residue limit (0.1 mg/kg) of ED for radishes, in order to suggest safe management guidelines of ED for radish-cultivating soils. CONCLUSION: Suggested guidelines showed the significant dependency on duration for radish cultivation and exposed concentration of ED in soil.

Evaluation of Indoor Air Quality in a Department of Radiation Oncology Located Underground (지하에 위치한 방사선종양학과에서의 실내공기 질 평가)

  • Kim, Won-Taek;Shin, Yong-Chul;Kang, Dong-Mug;Ki, Yong-Kan;Kim, Dong-Won;Kwon, Byung-Hyun
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.243-252
    • /
    • 2005
  • Purpose: Indoor air quality (IAQ) in the radiation treatment center which is generally located underground is important to the health of hospital workers and patients treated over a long period of time. this study was conducted to measure and analyze the factors related to IAQ and subjective symptoms of sick building syndrome, and to establish the causes influencing IAQ and find a solution to the problems. Methods and Materials : Self administrated questionnaire was conducted to check the workers' symptoms and understanding of the work environment. Based on a preliminary investigation, the factors related to IAQ such as temperature, humidity, fine particulate. carbon dioxide, carbon monoxide, formaldehyde, total volatile organic compounds (TVOC), and radon gas were selected and measured for a certain period of time in specific sites where hospital workers stay long in a day. And we also evaluated the surrounding environment and the efficiency of the ventilating system simultaneously, and measured the same factors at the first floor (outdoor) to compare with outdoor all quality, All collected data were assessed by the recommended standard for IAQ of the domestic and international environmental organizations. Results: Hospital workers were discontented with foul odors, humidity and particulate. They complained symptoms related to musculo-skeletal system, neurologic system, and mucosal-irritatation. Most of the factors were not greater than the recommended standard, but the level of TVOC was third or fourth times as much as the measuring level of some offices in the United States. The frequency and the amount of the ventilating system were adequate, however, the problem arising in the position of outdoor-air inlets and indoor-air outlets involved a risk of the indraft of contaminated air. A careful attention was a requirement in handling and keeping chemical substances including a developing solution which has a risk of TVOC emissions, and repositioning the ventilating system was needed to solve the contaminated-air circulation immediately Conclusion We verified that some IAQ-related factors and inadequate ventilating system could cause subjective symptoms in hospital workers. The evaluation of IAQ was surely needed to improve the underground working environments for hospital workers and patients. On the basis of these data, from now on, we should actively engage in designs of the department of radiation oncology or improvement in environments of the existing facilities.

Development of Analytical Method for the Determination and Identification of Unregistered Pesticides in Domestic for Orange and Brown Rice(I) -Chlorthal-dimethyl, Clomeprop, Diflufenican, Hexachlorobenzene, Picolinafen, Propyzamide- (식품공전 분석법 미설정 농약의 잔류분석법 확립(I) -Chlorthal-dimethyl, Clomeprop, Diflufenican, Hexachlorobenzene, Picolinafen, Propyzamide-)

  • Chang, Hee-Ra;Kang, Hae-Rim;Kim, Jong-Hwan;Do, Jung-A;Oh, Jae-Ho;Kwon, Ki-Sung;Im, Moo-Hyeog;Kim, Kyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.157-163
    • /
    • 2012
  • BACKGROUND: For the safety of imported agricultural products, the study was conducted to develop the analytical method of unregistered pesticides in domestic. The analytical method of 6 pesticides, chlorthal-dimethyl, clomeprop, diflufenican, hexachlorobenzene, picolinafen, and propyzamide, for a fast multi-residue analysis were established for two different type crops, orange and brown rice by GC-ECD and confirmed by mass spectrometry. METHODS AND RESULTS: The analytical method was evaluated to limit of quantification, linearity and recoveries. The crop samples were extracted with acetonitrile and performed cleanup by liquid-liquid partition and Florisil SPE to remove co-extracted matrix. The extracted samples were analyzed by GC-ECD with good sensitivity and selectivity of the method. The limits of quantification (LOQ) range of the method with S/N ratio of 10 was 0.02~0.05 mg/kg for orange and brown rice. The linearity for targeted pesticides were $R^2$ >0.999 at the levels ranged from 0.05 to 10.0 mg/kg. The average recoveries ranged from 74.4% to 110.3% with the percentage of coefficient variation in the range 0.2~8.8% at two different spiking levels (0.02 mg/kg and 0.2 mg/kg, 0.05 mg/kg and 0.5 mg/kg) in brown rice. And the average recoveries ranged from 77.8% to 118.4% with the percentage of coefficient variation in the range 0.2~6.6% at two different spiking levels (0.02 mg/kg and 0.2 mg/kg, 0.05 mg/kg and 0.5 mg/kg) in orange. Final determination was by gas chromatography/mass spectrometry/selected ion monitoring (GC/MS/SIM) to identify the targeted pesticides. CONCLUSION: As a result, this developed analytical method can be used as an official method for imported agricultural products.

Establishment of Pre-Harvest Residue Limit for Buprofezin and Penthiopyrad during Cultivation of Oriental melon (Cucumis melon var. makuwa) (참외(Cucumis melon var. makuwa)에 대한 Buprofezin 및 Penthiopyrad의 생산단계 잔류허용기준 설정)

  • Kim, Hea Na;Kim, Seong Beom;Choi, Eun;Woo, Min Ji;Kim, Ji Yoon;Saravanan, Manoharan;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.3
    • /
    • pp.123-129
    • /
    • 2014
  • The present work was aimed to determine the pre-harvest residue limits (PHRLs) and the safety management of commonly used pesticides namely buprofezin and penthiopyrad on oriental melon (Cucumis melon var. makuwa). In this study, the buprofezin (diluted two thousand fold) and penthiopyrad (diluted four thousand fold) were sprayed single time on oriental melon in the cultivation areas Sangju (site 1) and Sungju (site 2). Oriental melon were randomly collected from the both areas at the end of 0 (2 hours after pesticides spaying), 1, 2, 3, 5, 7, 9 and 10 days. For analysis, each samples were partitioned twice (80 and 70 mL) with dichloromethane and purified by florisil SPE cartridge. Finally, the residual amounts of both pesticides in all samples were analyzed using gas chromatography/nitrogen phosphorus detector (GC/NPD). In this study, the method limit of quantification (MLOQ) for both buprofezin and penthiopyrad in oriental melon was found to be $0.01mg\;kg^{-1}$ and their recovery levels were 91.1~98.6% and 90.0~104.6%, respectively. Further, the calculated biological half-life for buprofezin and penthiopyrad in oriental melon were 3.9 and 3.5, and 3.0 and 2.7 days in site 1 and 2, respectively. The results of this study found that the PHRLs for buprofezin and penthiopyrad were 4.24 and $2.31mg\;kg^{-1}$, respectively at 10 days before harvest. Consequently, the present study suggest that the residual amounts of both pesticides will be lower than the maximum residue limits (MRLs) when oriental melon is harvested.

A Study on the Application of Bushings Fire Prevent Structure to Prevent Fire Spread of Transformer (변압기의 화재확산 방지를 위한 부싱 방화구조체 적용에 관한 연구)

  • Kim, Do-Hyun;Cho, Nam-Wook;Yoon, Choung-Ho;Park, Pil-Yong;Park, Keun-Sung
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.53-62
    • /
    • 2017
  • Electric power which is the energy source of economy and industries requires long distance transportation due to regional difference between its production and consumption, and it is supplied through the multi-loop transmission and distribution system. Prior to its actual use, electric power flows through several transformations by voltage transformers in substations depending on the characteristics of each usage, and a transformer has the structure consisting of the main body, winding wire, insulating oil and bushings. A transformer fire that breaks out in substations entails the primary damage that interrupts the power supply to houses and commercial facilities and causes various safety accidents as well as the secondary economic losses. It is considered that causes of such fire include the leak of insulating oil resulting from the destruction of bottom part of bushings, and the chain reaction of fire due to insulating oil that reaches its ignition point within 1 second. The smoke detector and automatic fire extinguishing system are established in order to minimize fire damage, but a difficulty in securing golden time for extinguishing fire due to delay in the operation of detector and release of gas from the extinguishing system has become a problem. Accordingly, this study was carried out according to needs of active mechanism to prevent the spread of fire and block the leak of insulating oil, in accordance with the importance of securing golden time in extinguishing a fire in its early stage. A bushings fireproof structure was developed by applying the high temperature shape retention materials, which are expanded by flame, and mechanical flame cutoff devices. The bushings fireproof structure was installed on the transformer model produced by applying the actual standards of bushings and flange, and the full scale fire test was carried out. It was confirmed that the bushings fireproof structure operated at accurate position and height within 3 seconds from the flame initiation. It is considered that it could block the spread of flame effectively in the event of actual transformer fire.

Comparison of volatile flavor compounds of yuzu, kumquat, lemon and lime (유자, 금귤, 레몬 및 라임의 휘발성 향기성분의 비교)

  • Hong, Young Shin;Lee, Ym Shik;Kim, Kyong Su
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.394-405
    • /
    • 2017
  • This study was conducted to confirm the usefulness of essential oil components in yuzu and kumquat cultivated in Korea for comparison with those in lemon and lime. The volatile flavor compounds in citrus fruits (yuzu, kumquat, lemon and lime) were extracted for 3 h with 100 mL redistilled n-pentane/diethylether (1:1, v/v) mixture, using a simultaneous steam distillation and extraction apparatus (SDE). The volatile flavor compositions of the samples were analyzed by gas chromatography-mass spectrometry (GC-MS). The aroma compounds analyzed were 104 (3,713.02 mg/kg) in yuzu, 87 (621.71 mg/kg) in kumquat 103 (3,024.69 mg/kg) in lemon and 106 (2,209.16 mg/kg) in lime. Limonene was a major volatile flavor compound in four citrus fruits. The peak area of limonene was 35.03% in yuzu, 63.82% in kumquat, 40.35% in lemon, and 25.06% in lime. In addition to limonene, the major volatile flavor compounds were ${\gamma}$-terpinene, linalool, ${\beta}$-myrcene, (E)-${\beta}$-farnesene, ${\alpha}$-pinene and ${\beta}$-pinene in yuzu, and ${\beta}$-myrcene, ${\alpha}$-pinene, (Z)-limonene oxide, (E)-limonene oxide, geranyl acetate and limonen-10-yl acetate in kumquat. Furthermore, ${\gamma}$-terpinene, ${\beta}$-pinene, ${\beta}$-myrcene, geranyl acetate, neryl acetate and (Z)-${\beta}$-bisabolene in lemon and ${\gamma}$-terpinene, ${\beta}$-pinene, (Z)-${\beta}$-bisabolene, neral, geranial and neryl acetate in lime were also detected. As a result, it was confirmed that the composition of volatile flavor compounds in four citrus fruits was different. Also, yuzu and kumquat are judged to be worthy of use alternatives for lemon and lime widely used in the fragrance industry.

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.