• Title/Summary/Keyword: Gas Retention Time

Search Result 179, Processing Time 0.031 seconds

Study of Operation Condition of Biofilter Using Fibril-form Matrix for Odor Gas Removal (악취가스 제거를 위안 섬유상 담체를 적용한 바이오필터 운전조건에 관한 연구)

  • Jeong Gwi-Taek;Lee Gwang-Yeon;Byun Ki-Young;Lee Kyoung-Min;Sunwoo Chang-Shin;Lee Woo-Tae;Park Chan-Young;Kim Do-Hyeong;Cha Jin-Myoung;Jang Young-Seon;Park Don-Hee
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.341-344
    • /
    • 2005
  • This research was performed for developing of biological treatment process of odor gas such as MEK, $H_2S$, and toluene, which was generated from the food waste recycling process. To establish the operational conditions of odor gas removal by small-scale biofiltration equipment, it was continuously operated by using toluene as a treating odor object. When the odor treating microorganisms were adhered to fibril form biofilter, high removal efficiency over $93\%$ was obtained by biofilm formation. At 400 ppm of inlet odor gas concentration and 10 sec of retention time, the removal efficiency was $76\%$ and $93\%$ in 1 st stage reactor and End stage reactor, respectively. However, the removal efficiency remained over $97\%$ at the operational conditions above 15 sec of retention time.

The Effect of Enzyme/Microbial Additive on Anaerobic Digestion of Primary Sludge

  • Kim, Hyung-Jin;Song, Chang-Soo;Kim, Dong-Wook;Pagilla, Kishna-R.
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_1
    • /
    • pp.35-40
    • /
    • 2001
  • Effect of the addition of an enzyme/microbial additive(EMA) to enhance anaerobic digestion of the primary sludge was investigated. Two laboratory scale anaerobic digester were operated with primary sludge taken from a municipal wastewater treatment plant. The digester receiving EMA with the sludge feed performed better than the control digester, when both were operated at 10-days and 15-days Solid Retention Time(SRT). Addition of EMA to the experimental digester provided 7%(10-days SRT) and 16%(15-days SRT) higher gas production compared to the control digester when both were fed with the same amount of volatile solids. The reduction in volatile solids was 24% better in the experimental digester compared to the control ar 10-days SRT, and the improvement 10% at 15-day SRT. Improvement in COD reduction, and fecal coliform density reduction were also seen in the experimental digester due to EMA addition compared to the control both ar 10-days SRT and 15-day SRT operation. Preliminary cost benefit analysis for a wastewater treatment plant showed that approximately $115/day in gas production improvements can be realized upon addition of EMA to primary sludge anaerobic digesters operating at 10-day SRT. The value of increased gas production was $172/day if the same digesters are operated with EMA addition at 15-day SRT.

  • PDF

The Study of Crude Oil Contaminated Soil Remediation by Indirect Thermal Desorption (간접열탈착방식을 이용한 원유오염토양 정화효율 평가)

  • Lee, In;Kim, Jong-Sung;Jung, Tae-Yang;Oh, Seung-Taek;Kim, Guk-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.14-20
    • /
    • 2016
  • Remediation of crude oil contaminated soil is complicate and hard to apply traditional methods because of its persistency, durability, and high viscosity. Therefore, in this study, the efficiency of crude oil contaminated soil remediation was tested by developing a pilot-scale thermal desorption system using the indirect heating method with an exhaust gas treatment. Under optimal condition drawed by temperature and retention time, the remedial efficiency of crude oil contaminated soil and treatability of exhaust gas were analyzed. Total Petroleum Hydrocarbon (TPH) concentration of crude oil contaminated soil was decreased to 69.7 mg/kg on average and the remedial efficiency was measured at 99.60%. Through the exhaust gas, 86.0% of Volatile Organic Compounds (VOC) was degraded and 97.16% of complex malodor was reduced under the suggested optimum operation condition. This study provides important basic data to be useful in scaling up of the indirect thermal desorption system for the remediation of crude oil contaminated soil.

미세조류의 Methane 발효특성

  • 강창민;최명락
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.5
    • /
    • pp.597-603
    • /
    • 1996
  • This study was carried out to examine degradation characteristics of microalgae Chlorella vulgaris in methane fermentation. We measured COD and VS reduction, gas and methane productivity, VFA (volatile fatty acid), respectively. Then we calculated material balance and hydrolysis rates in soluble and solid material. The substrate concentration was controlled from 14 gCOD$_{cr}$/l to 64 gCOD$_{cr}$/l in batch cultures, and HRT (hydraulic retention time) controlled from 2 days to 30 days in continuous experi- ments. The results were as follows. In batch culture, accumulated gas productivity increased with the increase of the substrate concentration. The SS and VSS was removed all about 30% increase of substrate concentration and the most of the degradable material removed during the first 10 days. The curve of gas and methane production rate straightly increased until substrate concentration is 26 gCOD$_{cr}$/l. In continuous culture experiments, the removal rates at HRT 10days were 20% for total COD and TOC, respectively. At longer HRT, there was no increase in the removal efficiency. At HRT 15 days, the removal rates were 30% for SS and VSS, respectively. Soluble organic materials were rapidly degraded, and so there was no accumulated. Soluble COD concentration was not increase regardless of HRT-increasing. That meaned the hydrolysis was one of the rate-limiting stage of methane fermentation. The first-order rate constants of hydrolysis were 0.23-0.28 day$^{-1}$ for VSS, and 0.07-0.08 day$^{-1}$ for COD.

  • PDF

Prediction of Retention Time for PAH Molecule in HPLC (고속액체 크로마토그래피에서 PAH분자의 구조에 따른 용리시간 예측)

  • Kim, Young-Gu
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.2
    • /
    • pp.102-108
    • /
    • 2000
  • Relative retention times (RRTs) of RAH molecules in HPLC are trained and predicted intesting sets using a multiple linear regression (NLR) and an artificial neural network (ANN). The maindescriptors in QSRR are molecular connectivity ($^1X_v,\;^2X_v$), the length-to-breadth ratios (L/B), and molecular dipole moment(D). L/B which is related with slot model is a good descripter in ANN, but isn't in MLR. Varainces which show the accuracy of prediction times in testing sets are 0.0099, 0.0114 for ANN and MLR, respectively. It was shown that ANN can exceed the MLR in prediction accuracy.

  • PDF

Treatment of Benzene Vapor Gas with Compost and Calcium Silicate Porous Biofilters (퇴비 및 규산칼슘계 다공성 바이오필터의 벤젠휘발가스 처리)

  • Park, Joon-Seok;Namkoong, Wan;Kim, Sun-A;Park, Young-Goo;Lee, Noh-Sup
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.21-27
    • /
    • 2005
  • This study was conducted to evaluate the biofiltration treatment characteristic for benzene vapor gas. Compost and calcium silicate porous material were used as biofilter fillers. Gas velocity and empty bed retention time were 15 m/hr and 4 min, respectively. Benzene gas removal efficiency of P-Bio (calcium silicate porous material with inoculation) was the highest and maintained in over 98%. After shock input of benzene gas, the removal efficiency of P-Bio biofilter was recovered within 2 days, while 5 days were taken in CP-Bio (compost + calcium silicate porous material mixture with inoculation) and CP (compost + calcium silicate porous material mixture without inoculation) biofilters. The removal efficiency of P-Bio biofilter was near 100% in the loading rate of <$85g/m^3$(filling material)/hr, It was shown that the maximum elimination capacities of P-Bio, CP-Bio, and CP biofilters were 95, 69, and $66\;g/m^3$(filling material)/hr, respectively. Microbial number of P-Bio, which the number was the lowest at start-up, was 3 orders increased on operational day 48. $CO_2$ was generated greatly in order of P-Bio, CP-Bio, and CP biofilters.

Study on The System Suitability Test for Alcohols Separation by GCOTC (GCOTC에 의한 알코올류 분리를 위한 시스템 적합성에 관한 연구)

  • Oh, Doe Seok;Kim, Sung Hwa;Lee, Seul;Choi, Jae Gu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.2
    • /
    • pp.123-129
    • /
    • 2017
  • Objectives: The purpose of this study is to enhance the application of analytical method of polar solvents(alcohols) by GCOTC (gas chromatography open tubular column) through the system suitability test(SST) to estimate the whole chromatographic system performance(integral part). Methods: To perform the SST, carried out repeatability(n=6) as analytical method of polar solvents by GCOTC, got the retention time($t_R$), standard deviation(${\sigma}_{n-1}$) of $t_R$, baseline width($w_b=4{\sigma}_{n-1}$) and calculated dead time($t_m$) by $v_m=d^2{\pi}L(f/4)$ and $v_m=t_m$ x flow rate. Results: In this experiment, obtained the basic data, there were $t_m=2$ min, methanol($t_R=3.569$, ${\sigma}_{n-1}=0.01$, $w_b=0.04$), ethanol ($t_R=3.892$, ${\sigma}_{n-1}=0.004$, $w_b=0.016$), isopropanol($t_R=4.209$, ${\sigma}_{n-1}=0.004$, $w_b=0.016$). By using these data, calculated the corrected retention time($t_R{^{\prime}}$), capacity factor(k), separation factor(${\alpha}$), number of theoretical plate(n) and resolution($R_s$) for SST and got the good results. Conclusions: Through the SST, could reconfirm the whole chromatographic performance system(integral part) for analytical method of polar solvents by GCOTC. Therefore, this analytical method expect to be widely applied at the related areas.

Analysis of Fatty Acid in Rice Bran Oil by Gas Chromatography (Gas Chromatography에 의(依)한 미강유(米糠油)의 지방산분석(脂肪酸分析))

  • Chung, T.M.;Shin, J.S.
    • Applied Biological Chemistry
    • /
    • v.9
    • /
    • pp.29-33
    • /
    • 1968
  • Through an experiment with gas chromatography carried out using diethylene glycol succinate(DEGS) as the packing material of the column, we have obtained the correction factor between the weight ratio and the peak dimension of the saturated fatty acid methyl esters of C10, C12, C14, C16, and C18 and unsaturated fatty acid methyl esters of oleic acid, linoloic acid, and linolenic acid, employing the detector of thermal conductivity type. Quantitative analysis of the fatty acids contained in rice Bran oil was performed with the above correction factor and the results are as follows; 1. Main components were found to be palmitic acid, oleic acid sand linolenic acid. No trases of capric acid (C10) lauric acid (C10) were found. 2. It was confirmed that there were straight line relation between the logarism retention time of each fatty acid and the number of carbon of saturated fatty acid or the number of double bond of other fatty acids having the same number of carbon. 3. The correction factor became larger as to the number of carbon increased up to C18 in case of saturated fatty acids, end as for other fatty acids, and as for other fatty acids of the same carbon number, it became larger according as the number of double bond increased.

  • PDF

Physicochemical Characteristics of Zeolite Mineral by Alkali Solution Treatment (알칼리 처리에 의한 Zeolite 광물의 물리화학적 특성)

  • Yim, Going
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.119-127
    • /
    • 1996
  • The effect of sodium hydroxide treatment on some physicochemical properties of zeolite mordenite mineral was studied with chemical analyses, powder X-ray diffraction, thermal analyses, infrared analysis, measurement of carbon dioxide adsorption and gas chromatography. Mordenite mineral from tuffaceous rocks in Yeongil and Wolsung area was used as a starting material and treated with 0.1-5N NaOH aqueous solution at about $95^{\circ}C$ in the water bath for three hours.At the concentration of sodium hydroxide below 0.5N, all chemical compositions in the tuff were virtually insoluble and the mordenite structure did not change. At the concentration above 1N, the chemical compositions such as silica, alumina, etc., were dissolved. The dissolution ratio of silica was lager than that of alumina, and the ratio of silica to alumina in the tuff decreased sharply in the concentration range of 2 to 3N. Intensity of X-ray diffraction peak of mordenite (202) plane and the adsorbed amount of carbon dioxide also decreased with the increasing concentration of sodium hydroxide above 1N. These decreases corresponded to the degree of mordenite structure collapsed.The separation of gas chromatography of nitrogen, oxygen and carbon monoxide was not affected by the sodium hydroxide treatment, but elution peaks of methane and krypton tended to be broadened and their retention time was shortened. The elution peaks of both methane and krypton tended to be overlapped with those of nitrogen and oxygen.

  • PDF

Biohydrogen Production from Carbon Monoxide and Water by Rhodopseudomonas palustris P4

  • Oh You-Kwan;Kim Yu-Jin;Park Ji-Young;Lee Tae Ho;Kim Mi-Sun;Park Sunghoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.270-274
    • /
    • 2005
  • A reactor-scale hydrogen (H2) production via the water-gas shift reaction of carbon monoxide (CO) and water was studied using the purple nonsulfur bacterium, Rhodopseudomonas palustris P4. The experiment was conducted in a two-step process: an aerobic/chemoheterotrophic cell growth step and a subsequent anaerobic $H_2$ production step. Important parameters investigated included the agitation speed. inlet CO concentration and gas retention time. P4 showed a stable $H_2$ production capability with a maximum activity of 41 mmol $H_2$ g $cell^{-1}h^{-1}$ during the continuous reactor operation of 400 h. The maximal volumetric H2 production rate was estimated to be 41 mmol $H_2 L^{-1}h^{-1}$, which was about nine-fold and fifteen-fold higher than the rates reported for the photosynthetic bacteria Rhodospirillum rubrum and Rubrivivax gelatinosus, respectively. This is mainly attributed to the ability of P4 to grow to a high cell density with a high specific $H_2$ production activity. This study indicates that P4 has an outstanding potential for a continuous H2 production via the water-gas shift reaction once a proper bioreactor system that provides a high rate of gas-liquid mass transfer is developed.