• Title/Summary/Keyword: Gas Reaction Control

Search Result 222, Processing Time 0.025 seconds

Development of an 1-Dimensional Dynamic Numerical Model for BTX Removal Process Analysis by Gaseous-Biofilm Filtration (기체상-생물막 여과 공법의 BTX 제거 공정 해석을 위한 1차원 동적 수치모델 개발)

  • Kim, Yeong-Kwan;Choi, Sung-Chan;Kim, Seog-Ku;Lee, Yong-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.12
    • /
    • pp.689-695
    • /
    • 2015
  • A biofilm filtration for the removal of gaseous pollutants has been recognized as a process with a complex interaction between the gas flow characteristics and the process operating variables. This study aims to develop an one dimensional dynamic numerical model which can be utilized as a tool for the analysis of biofilm filtration process operated in plug flow mode. Since, in a plug flow system, minor environmental changes in a gaseous unit process cause a drastic change in reaction and the interaction between the pollutants is an influencing factor, plug flow system was generalized in developing the model. For facilitation of the model development, dispersion was simplified based on the principles of material balance. Several reactions such as competition, escalation, and control between the pollutants were included in the model. The applicability of the developed model was evaluated by taking the calibration and verification steps on the experimental data performed for the removal of BTX at both low and high flow concentration. The model demonstrated a correlation coefficient ($R^2$) greater than 0.79 under all the experimental conditions except for the case of toluene at high flow condition, which suggested that this model could be used for the generalized gaseous biofilm plug flow filtration system. In addition, this model could be a useful tool in analyzing the design parameters and evaluating process efficiency of the experiments with substantial amount of complexity and diversity.

Practical Usage of Low-Temperature Metal Catalyst for the Destruction of Volatile Organic Compounds (VOCs) (휘발성 유기화합물(VOCs) 제거를 위한 저온금속촉매 실용화에 관한 연구)

  • Jung, Sung-Chul;Lee, Seung-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.397-405
    • /
    • 2012
  • In this study, performance evaluation of newly developed technology for the economical and safe removal of volatile organic compounds (VOCs) coming out from electronic devices washing operation and offensive odor induction materials was made. Metal oxidization catalyst has shown 50% of removal efficiency at the temperature of $220^{\circ}C$. Composite metal oxidization catalyst applied in this study has shown that the actual catalysis has started at the temperature of $100^{\circ}C$. Comprehensive analysis on the catalyst property using Mn-Cu metal oxidization catalyst in the pilot-scale unit was made and the removal efficiency was variable with temperature and space velocity. Full-scale unit developed based on the pilot-scale unit operation has shown 95% of removal efficiency at the temperature of $160^{\circ}C$. Optimum elimination effective rates for the space velocity was found to be $6,000hr^{-1}$. The most appropriate processing treatment range for the inflow concentration of VOCs was between 200 ppm to 4,000 ppm. Catalyst control temperature showed high destruction efficiency at $150{\sim}200^{\circ}C$ degrees Celsius in 90~99%. External heat source was not necessary due to the self-heat reaction incase of VOCs inflow concentration is more than 1,000 ppm. Equipment and fuel costs compared to the conventional RTO/RCO method can be reduced by 50% and 75% respectively. And it was checked when there was poisoning for sulfide and acid gas.

Analysis of Fatty Acid Composition and Effects of Pumpkin Seed Oil on Human Umbilical Vein Endothelial Cells (호박씨유의 지방산 성분 분석 및 Human Umbilical Vein Endothelial Cell에 미치는 영향 연구)

  • Kim, Kyoung Kon;Kang, Yun Hwan;Kim, Dae Jung;Kim, Tae Woo;Lee, Jeong Il;Choe, Myeon
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.24 no.3
    • /
    • pp.351-358
    • /
    • 2014
  • Pumpkin seed oil (PSO) was investigated for its parasite elimination activity and efficacy in treating disorders of the prostate gland and urinary bladder. We confirmed the composition of PSO and identified its ability to improve vessels. Gas chromatography coupled with mass spectrometric (GC-MS) system was used for PSO composition analysis. Cytotoxicity and cell proliferation were confirmed by Cell Counting Kit-8 (CCK-8) assay. Nitric oxide(NO) production was measured with Griess reagent, and intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 mRNA expression levels were measured by reverse transcription polymerase chain reaction (RT-PCR). As a result, PSO revealed the presence of several components such as linoleic acid, oleic acid, palmitic acid and stearic acid. Cytotoxic effects of PSO were not observed, and PSO increased nitric oxide production in human umbilical vein endothelial cells (HUVEC). Additionally, TNF-${\alpha}$-induced cell proliferation and ICAM-1 expression in HUVEC were inhibited by PSO treatment, whereas VCAM-1 expression was not significantly reduced. Taken together, these results show that PSO is worthy of study as a candidate food material for improvement of vascular disease.

Fabrication of Electroconductive $Si_3N_4$-TiN Ceramic Composites by In-Situ Reaction Sintering (In-Situ 반응소결에 의한 전도성 $Si_3N_4$-TiN 복합세라믹스 제조)

  • Lee, Byeong-Taek;Yun, Yeo-Ju;Park, Dong-Su;Kim, Hae-Du
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.577-582
    • /
    • 1999
  • In order to make the electroconductive $Si_3N_4$-TiN composities, the Si-Ti(N) compacts were nitrided at $1450^{\circ}C$ for 20hours, and then they were post-sintered by a gas-pressure-sintering technique at 1TEX>$1950^{\circ}C$ for 3.5 hours. As starting powders, commercial si powder of about $10\mu\textrm{m}$, two types of Ti powders of 100 and 325 mesh, and fine-sized TiN of $2.5\mu\textrm{m}$ powders were used. In the $Si_3N_4$-TiN sintered bodies used Ti powders, the relative density and fracture strength and electrical conductivity are low due to the existence of large amounts of coarse pores. However, in the $Si_3N_4$-TiN composite used TiN powder, the fracture toughness, fracture strength and electrical resistivity were $5.0MPa{\cdot}m^{1/2}$, 624MPa and $1400{\omega}cm$, respectively. The dispersion of TiN particles in the composite inhibited the growth of $Si_3N_4$ in the shape of rod and made strong strain field contrasts at the $Si_3N_4$-TiNinterfaces. It was recognized that microstructural control is required to improve the electrical conductivity and mechanical properties of $Si_3N_4$-TiN composites by dispersing TiN particles homogeneously.

  • PDF

Research on the Assembling Process of 7 tonf Class Small Liquid Rocket Engines (7 tonf 급 소형 액체로켓엔진 조립 체계 연구)

  • Moon, In Sang;Moon, Il Yoon;Jeong, Eun Hwan;Park, Soon Young
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.48-53
    • /
    • 2017
  • Liquid rocket engines (LREs) are very complex systems that include combustion chambers, turbopumps, gas generators, ducts and tubes, valves and etc. Most components of the LREs require higher than or equal to level 6 IT (ISO Tolerance). The components along with pipe line and/or tubing must dispose not to interfere each other. In addition, effectiveness of maintenance and service after assembling should be considered when the allocation of the components are determined. Especially at the stage of the development, tolerance accumulations or unpredictable errors may result in misalignment and/or mismatches at interfaces of the parts. Namely, it is the engine assembling process that many inherent risks are realized and crises or incidents occur. Therefore, a rapid reaction system should be prepared. In this research, 7 tonf class liquid rocket assembling process was studied and actual building steps were introduced.

Evaluation of Natural Attenuation by Addition of Fumarate as Carbon Source and Gene Analysis in Groundwater Sample (지하수 중 탄소원으로 fumarate 주입과 유전자분석을 통한 질산성질소 자연저감도 평가)

  • Park, Sunhwa;Kim, Hyun-Gu;Kim, Sohyun;Lee, Min-Kyeong;Lee, Gyeong-Mi;Kim, Young;Kim, Moon-Su;Kim, Taeseung
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.62-69
    • /
    • 2014
  • In the results of monitoring nitrate concentration in more than 8,000 groundwater wells around agro-livestock, the average and maximum nitrate concentration was 9.4 mg/L and 101.2 mg/L, respectively. Since about 31% of the monitoring wells was exceed the quality standard for drinking water, nitrate control such as remediation or source regulation is required to conserve safe-groundwater in South Korea. Typical nitrate-treatment technologies include ion exchange, reverse osmosis, and biological denitrification. Among the treatment methods, biological denitrification by indigenous microorganism has environmental and economic advantages for the complete elimination of nitrate because of lower operating costs compared to other methods. Major mechanism of the process is microbial reduction of nitrate to nitrite and nitrogen gas. Three functional genes (nosZ, nirK, nirS) that encode for the enzyme involved in the pathway. In this work, we tried to develop simple process to determine possibility of natural denitrification reaction by monitoring the functional gene. For the work, the functional genes in nitrate-contaminated groundwater were monitored by using PCR with specific target primers. In the result, functional genes (nosZ and nirK) encoding denitrification enzymes were detected in the groundwater samples. This method can help to determine the possibility of natural-nitrate degradation in target groundwater wells without multiplex experimental process. In addition, for field-remediation application we selected nitrate-contaminated site where 200~600 mg/L of nitrate is continuously detected. To determine the possibility of nitrate-degradation by stimulated-natural attenuation, groundwater was sampled in two different wells of the site and nitrate concentration of the samples was 300 mg/L and 616 mg/L, respectively. Fumarate for different C/N ratio was added into microcosm bottles containing the groundwater to examine denitrification rate depending on carbon concentration. In the result, once 1.5 times more than amount of fumarate stoichiometry required was added, the 616 mg/L of nitrate and 300 mg/L of nitrate were completely degraded in 8 days and 30 days. The nitrite, byproduct of denitrification process, was also completely degraded during the experimental period.

Characteristics of RDF Char Combustion in a Bubbling Fluidized Bed (기포 유동층 내에서 RDF 촤의 연소 특성)

  • Kang, Seong-Wan;Kwak, Yeon-Ho;Cheon, Kyoung-Ho;Park, Sung Hoon;Jeon, Jong-Ki;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.429-432
    • /
    • 2011
  • The feasibility of applications of the char obtained from a gasification process of municipal-waste refuse derived fuel (RDF) as an auxiliary fuel was evaluated by combustion experiments. The higher heating value of the RDF char was 3000~4000 kcal/kg and its chlorine content was below the standard requirement demonstrating its potential as an auxiliary fuel. In the combustion exhaust gas, the maximum $NO_x$ and $SO_2$ concentrations were 240 ppm and 223 ppm, respectively. If an aftertreatment is applied, it is possible to control their concentrations low enough to meet the air pollutant emission standard. The HCl concentration was relatively high indicating that a care should be taken for HCl emission from the combustion of RDF. Based on the temperature distribution within the reactor, the concentration change of $O_2$ and $CO_2$, and the amount and the loss on ignition of solid residue, it was inferred that the combustion reaction was the most reliable when the excess air ratio of 1.3 was used.

Research Trends on Developments of High-performance Perfluorinated Sulfonic Acid-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 고성능 과불소화계 전해질 막 개발 연구 동향)

  • Choi, Chanhee;Hwang, Seansoo;Kim, Kihyun
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.292-303
    • /
    • 2022
  • An eco-friendly energy conversion device without the emission of pollutants has gained much attention due to the rapid use of fossil fuels inducing carbon dioxide emissions ever since the first industrial revolution in the 18th century. Polymer electrolyte membrane fuel cells (PEMFCs) that can produce water during the reaction without the emission of carbon dioxide are promising devices for automotive and residential applications. As a key component of PEMFCs, polymer electrolyte membranes (PEMs) need to have high proton conductivity and physicochemical stability during the operation. Currently, perfluorinated sulfonic acid-based PEMs (PFSA-PEMs) have been commercialized and utilized in PEMFC systems. Although the PFSA-PEMs are found to meet these criteria, there is an ongoing need to improve these further, to be useful in practical PEMFC operation. In addition, the well-known drawbacks of PFSA-PEMs including low glass transition temperature and high gas crossover need to be improved. Therefore, this review focused on recent trends in the development of high-performance PFSA-PEMs in three different ways. First, control of the side chain of PFSA copolymers can effectively improve the proton conductivity and thermal stability by increasing the ion exchange capacity and polymer crystallinity. Second, the development of composite-type PFSA-PEMs is an effective way to improve proton conductivity and physical stability by incorporating organic/inorganic additives. Finally, the incorporation of porous substrates is also a promising way to develop a thin pore-filling membrane showing low membrane resistance and outstanding durability.

STUDY OF RAT EPIGASTRIC VESSELS ACCORDING TO THE FREEZING TIME : HISTOLOGIC, HISTOMORPHOMETRIC, IMMUNOHISTOCHEMICAL & SCANNING ELECTRON MICROSCOPIC STUDY (백서 상복부 혈관의 동결시간에 따른 변화에 대한 연구)

  • Kim, Woo-Chan;Lee, Chong-Heon;Kim, Kyung-Wook;Kim, Chang-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.2
    • /
    • pp.89-109
    • /
    • 1999
  • Vascular spasm which has been reported to occur in 25% of clinical cases continues to be a problem in microvascular surgery; When prolonged and not corrected, it can lead to low flow, thrombosis, and replant or free flap failure. Ischemia, intimal damage, acidosis and hypovolemia have been implicated as contributors to the vascular spasm. Although much work has been done on the etiology and prevention of vasospasm, a spasmolytic agent capable of firmly protecting against or reversing vasospasm has not been found. Therefore vascular freezing was introduced as a new safe method that immediately and permanently relieves the vasospasm and can be applied to microsurgical transfers. Cryosurgery can be defined as the deliberate destruction of diseased tissue or relief the vascular spasm in microvascular surgery by freezing in a controlled manner. 96 Sprague Dawley rats each weighing within 250g were used and divided into 2 group, experimental 1 and 2 group. In the experimental 1 group, right epigastric vessels (artery and vein) were freezed with a cryoprobe using $N_2O$ gas for 1 min. In the experimental 2 group, after freezing for 1 min, thawing for 30 secs and repeat freezing for 30 secs. Left side was chosen as control group in both group. We sacrified the experimental animals by 1 day, 3 days, 1 week, 2 weeks, 4 weeks & 5 months and observed the sequential change that occur during regeneration of epigastric vessels using a histologic, histomorphometric, immunohistochemical and SEM study after the vascular freezing. The results were as follows1. In epigastric arteries, internal diameters had statistically significant enlargement in 1 day, 3 days of Exp-1 group and 1 day, 3 days, 1 week & 2 weeks of Exp-2 group. Wall thickness had statistically significant thinning in 2 weeks of Exp-2 group. 2. In epigastric veins, internal diameters had enlargement of statistical significance in 1 day of Exp-1 and Exp-2 group. 3. The positive PCNA reactions in smooth muscle appeared in 1 week and increased until 2 weeks, decreased in 4 weeks. There was no statistical significance between Exp-1 and Exp-2 group. 4. The positive ${\alpha}$-SMA reaction in smooth muscles showed weak responses until 1 week and slowly increased in 2 weeks and showed almost control level in 4 weeks. 5. The positive S-100 reactions in the perivascular nerve bundles showed markedly decrease in 1 day, 3 days and increased after 1 week and showed almost control level in 4 weeks. Exp-1 group had stronger response than Exp-2 group. 6. In SEM, we observed defoliation of endothelial cell and flattening of vessel wall. Exp-2 group is more destroyed and healing was slower than Exp-1 group. To sum up, relief of vasospasm (vasodilatation) by freezing with cryoprobe was originated from the damage of smooth muscle layer and perivascular nerve bundle and the enlargement of internal diameter in vessels was similar to expeimental groups, but Exp-2 group had slower healing course and therefore vessel freezing in microsurgery can be clinically used, but repeat freezing time needs to be studied further.

  • PDF

Study of Oil Palm Biomass Resources (Part 5) - Torrefaction of Pellets Made from Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 V - 오일팜 바이오매스 펠릿의 반탄화 연구 -)

  • Lee, Ji-Young;Kim, Chul-Hwan;Sung, Yong Joo;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Yim, Hyun-Tek;Lee, Min-Seok;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.34-45
    • /
    • 2016
  • Global warming and climate change have been caused by combustion of fossil fuels. The greenhouse gases contributed to the rise of temperature between $0.6^{\circ}C$ and $0.9^{\circ}C$ over the past century. Presently, fossil fuels account for about 88% of the commercial energy sources used. In developing countries, fossil fuels are a very attractive energy source because they are available and relatively inexpensive. The environmental problems with fossil fuels have been aggravating stress from already existing factors including acid deposition, urban air pollution, and climate change. In order to control greenhouse gas emissions, particularly CO2, fossil fuels must be replaced by eco-friendly fuels such as biomass. The use of renewable energy sources is becoming increasingly necessary. The biomass resources are the most common form of renewable energy. The conversion of biomass into energy can be achieved in a number of ways. The most common form of converted biomass is pellet fuels as biofuels made from compressed organic matter or biomass. Pellets from lignocellulosic biomass has compared to conventional fuels with a relatively low bulk and energy density and a low degree of homogeneity. Thermal pretreatment technology like torrefaction is applied to improve fuel efficiency of lignocellulosic biomass, i.e., less moisture and oxygen in the product, preferrable grinding properties, storage properties, etc.. During torrefacton, lignocelluosic biomass such as palm kernell shell (PKS) and empty fruit bunch (EFB) was roasted under an oxygen-depleted enviroment at temperature between 200 and $300^{\circ}C$. Low degree of thermal treatment led to the removal of moisture and low molecular volatile matters with low O/C and H/C elemental ratios. The mechanical characteristics of torrefied biomass have also been altered to a brittle and partly hydrophobic materials. Unfortunately, it was much harder to form pellets from torrefied PKS and EFB due to thermal degradation of lignin as a natural binder during torrefaction compared to non-torrefied ones. For easy pelletization of biomass with torrefaction, pellets from PKS and EFB were manufactured before torrefaction, and thereafter they were torrefied at different temperature. Even after torrefaction of pellets from PKS and EFB, their appearance was well preserved with better fuel efficiency than non-torrefied ones. The physical properties of the torrefied pellets largely depended on the torrefaction condition such as reaction time and reaction temperature. Temperature over $250^{\circ}C$ during torrefaction gave a significant impact on the fuel properties of the pellets. In particular, torrefied EFB pellets displayed much faster development of the fuel properties than did torrefied PKS pellets. During torrefaction, extensive carbonization with the increase of fixed carbons, the behavior of thermal degradation of torrefied biomass became significantly different according to the increase of torrefaction temperature. In conclusion, pelletization of PKS and EFB before torrefaction made it much easier to proceed with torrefaction of pellets from PKS and EFB, leading to excellent eco-friendly fuels.