• Title/Summary/Keyword: Gas Reaction Control

Search Result 222, Processing Time 0.03 seconds

Combustion Characteristics of Gasoline HCCI Engine with DME as an Ignition Promoter (DME를 착화촉진제로 사용한 가솔린 예혼합 압축 착화 엔진의 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.178-185
    • /
    • 2006
  • This paper investigates the steady-state combustion characteristics of the Homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out its benefits in exhaust gas emissions. HCCI combustion is an attractive way to lower carbon dioxide($CO_2$), nitrogen oxides(NOx) emission and to allow higher fuel conversion efficiency. However, HCCI engine has inherent problem of narrow operating range at high load due to high in-cylinder peak pressure and consequent noise. To overcome this problem, the control of combustion start and heat release rate is required. It is difficult to control the start of combustion because HCCI combustion phase is closely linked to chemical reaction during a compression stroke. The combination of VVT and DME direct injection was chosen as the most promising strategy to control the HCCI combustion phase in this study. Regular gasoline was injected at intake port as main fuel, while small amount of DME was also injected directly into the cylinder as an ignition promoter for the control of ignition timing. Different intake valve timings were tested for combustion phase control. Regular gasoline was tested for HCCI operation and emission characteristics with various engine conditions. With HCCI operation, ignition delay and rapid burning angle were successfully controlled by the amount of internal EGR that was determined with VVT. For best IMEP and low HC emission, DME should be injected during early compression stroke. IMEP was mainly affected by the DME injection timing, and quantities of fuel DME and gasoline. HC emission was mainly affected by both the amount of gasoline and the DME injection timing. NOx emission was lower than conventional SI engine at gasoline lean region. However, NOx emission was similar to that in the conventional SI engine at gasoline rich region. CO emission was affected by the amount of gasoline and DME.

Application of Anaerobic Sequencing Batch Reactor to Mesophilic Digestion of Municipal Sewage Sludge (중온 혐기성 연속회분식 공정에 의한 도시하수슬러지의 소화가능성 평가)

  • Hur, Joon-Moo;Chang, Duk;Chung, Tai-Hak;Son, Bo-Soon;Park, Jong-An
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.9-19
    • /
    • 1998
  • Laboratory experiments were carried out to investigate the performance of anaerobic sequencing batch reactor(ASBR) for digestion of a municipal sludge. Each cycle of the ASBR comprised feeding, two-or three-day reaction, one-day thickening, and withdrawal. The reactors were operated at an HRT of 10days and 5days with an equivalent organic loading rate of 0.8-1.54 gVS/l/d, 1.81-3.56 gVS/l/d at 35$\circ$C, respectively. Solids accumulation was remarkable in the ASBR during start-up period, and directly affected by settleable solids in the feed sludge. Floatation thickening occured in the ASBRs, and Solids profiles at the end of thickening step dramatically changed at solid-liquid interface. Slight difference in solids concentrations was observed within thickened sludge bed. Efficiencies through floatation thickening were comparable to that of additional thickening of the completely mixed control reactor. Average solids concentrations in the ASBRs were 2.2-2.6 times higher than that in the control throughout the total operation period. The dehydrogenase activity had a strong correlation with the solids concentration. Organics removals based on clarified effluent of the ASBRs were consistently above 86%. Remarkable increase in equivalent gas production of 27-52% was observed at the ASBRs compared with the control though the control and ASBRs showed similiar effluent quality. Thus, digestion of a municipal sludge was possible using the ASBR in spite of high concentration of solids in the sludge.

  • PDF

Effects of short-term fasting on in vivo rumen microbiota and in vitro rumen fermentation characteristics

  • Kim, Jong Nam;Song, Jaeyong;Kim, Eun Joong;Chang, Jongsoo;Kim, Chang-Hyun;Seo, Seongwon;Chang, Moon Baek;Bae, Gui-Seck
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.776-782
    • /
    • 2019
  • Objective: Fasting may lead to changes in the microbiota and activity in the rumen. In the present study, the effects of fasting on rumen microbiota and the impact of fasting on in vitro rumen fermentation were evaluated using molecular culture-independent methods. Methods: Three ruminally cannulated Holstein steers were fed rice straw and concentrates. The ruminal fluids were obtained from the same steers 2 h after the morning feeding (control) and 24 h after fasting (fasting). The ruminal fluid was filtrated through four layers of muslin, collected for a culture-independent microbial analysis, and used to determine the in vitro rumen fermentation characteristics. Total DNA was extracted from both control and fasting ruminal fluids. The rumen microbiota was assessed using denaturing gradient gel electrophoresis (DGGE) and quantitative polymerase chain reaction. Microbial activity was evaluated in control and fasting steers at various intervals using in vitro batch culture with rice straw and concentrate at a ratio of 60:40. Results: Fasting for 24 h slightly affected the microbiota structure in the rumen as determined by DGGE. Additionally, several microorganisms, including Anaerovibrio lipolytica, Eubacterium ruminantium, Prevotella albensis, Prevotella ruminicola, and Ruminobacter amylophilus, decreased in number after fasting. In addition, using the ruminal fluid as the inoculum after 24 h of fasting, the fermentation characteristics differed from those obtained using non-fasted ruminal fluid. Compared with the control, the fasting showed higher total gas production, ammonia, and microbial protein production (p<0.05). No significant differences, however, was observed in pH and dry matter digestibility. Conclusion: When in vitro techniques are used to evaluate feed, the use of the ruminal fluid from fasted animals should be used with caution.

An application of the electrostatic spray technology to increase scrubbing efficiency of SO$_{2}$ emitted from thermal systems (열시스템에서 생성된 SO$_{2}$ 가스의 배출저감을 위한 정전기 분무 원리의 응용)

  • Jeong, Jae-Yun;Byeon, Yeong-Cheol;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.1068-1076
    • /
    • 1997
  • Emission control of acid exhaust gases from coal-fired power plants and waste incinerators has become an increasing concern of both industries and regulators. Among those gaseous emissions, SO$_{2}$ has been eliminated by a Spray Drying Absorber (SDA) system, where the exhaust gas is mixed with atomized limestone-water slurry droplets and then the chemical reaction of SO$_{2}$ with alkaline components of the liquid feed forms sulfates. Liquid atomization is necessary because it maximizes the reaction efficiency by increasing the total surface area of the alkaline components. An experimental study was performed with a laboratory scale SDA to investigate whether the scrubbing efficiency for SO$_{2}$ reduction increased or not with the application of a DC electric field to the limestone-water slurry. For a selected experimental condition SO$_{2}$ concentrations exited from the reactor were measured with various applied voltages and liquid flow rates. The applied voltage varied from -10 to 10 kV by 1 kV, and the volume flow rate of slurry was set to 15, 25, 35 ml/min which were within the range of emission mode. Consequently, the SO$_{2}$ scrubbing efficiency increased with increasing the applied voltage but was independent of the polarity of the applied voltage. For the electrical and flow conditions considered a theoretical study of estimating average size and charge of the atomized droplets was carried out based on the measured current-voltage characteristics. The droplet charge to mass ratio increased and the droplet diameter decreased as the strength of the applied voltage increased.

A Study on the Identification Technique and Prevention of Combustion Diffusion through ESS (Energy Storage System) Battery Fire Case (ESS (에너지 저장장치) 배터리 화재사례를 통한 감식기법 및 연소 확산방지에 관한 연구)

  • Lee, Jung-Il
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.2
    • /
    • pp.383-391
    • /
    • 2020
  • Purpose: To identify internal self ignition and ignition caused by external flames in energy storage rooms, and to analyze the difference between ignition due to overheating and ignition caused by external heat sources. Method: membrane melting point measurement, battery external hydrothermal experiment, battery overcharge experiment, comparative analysis of electrode plate during combustion by overcharge and external heat, overcharge combustion characteristics, external hydrothermal fire combustion characteristics, 3.4 (electrode plate comparison) / 3.5 (overcharge) /3.6 (external sequence) analysis experiment. Result: Since the temperature difference was very different depending on the position of the sensor until the fire occurred, it is judged that two temperature sensors per module are not enough to prevent the fire through temperature control in advance. Conclusion: The short circuit acts as an ignition source and ignites the mixed gas, causing a gas explosion. The electrode breaks finely due to the explosion pressure, and the powder-like lithium oxide is sparked like a firecracker by the flame reaction.

Development of composite catalyst for hazardrous gas treatment using the heat of aviary heating equipment (계사용 온풍기를 이용한 유해가스처리 복합촉매시스템 개발)

  • Jang, Hyun-Tae;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2779-2785
    • /
    • 2009
  • Among the livestock, chickens are raised because of the merit ingested protein in low-priced cost of production and are primary livestock increased the consumption of meat. The factors of influencing condition, odor is the most important factor. Odor substances are ammonia, amines, hydrogen sulfide and mercaptan which come from night soil. Livestock are prevented from rearing by means of these odor substances. Though the henhouse is heated using hot air type heater in the winter season, it is ventilated for the control of odor because of the increase of odor concentration. In the present work, composite catalytic system combined the existing facilities(hot air type heater) with catalytic system was developed, it could controled odor and hazardous gas using the oxidation/reduction reaction without extra operating cost. Moreover, the purpose of this work is to develop the catalysts which are cost competitive and can maximize energy efficiency. The catalysts are noble metal(Pt-Rh) and composite transition metal(Mn) type.

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

Characteristics of Silicon Nanoparticles Depending on H2 Gas Flow During Nanoparticle Synthesis via CO2 Laser Pyrolysis (CO2 레이저 열분해법을 이용한 실리콘 나노입자 합성 시 H2 유량이 나노입자 특성에 미치는 영향)

  • Lee, Jae Hee;Kim, Seongbeom;Kim, Jongbok;Hwang, Taekseong;Lee, Jeong Chul
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.260-265
    • /
    • 2013
  • Silicon nanoparticle is a promising material for electronic devices, photovoltaics, and biological applications. Here, we synthesize silicon nanoparticles via $CO_2$ laser pyrolysis and study the hydrogen flow effects on the characteristics of silicon nanoparticles using high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and UV-Vis-NIR spectrophotometry. In $CO_2$ laser pyrolysis, used to synthesize the silicon nanoparticles, the wavelength of the $CO_2$ laser matches the absorption cross section of silane. Silane absorbs the $CO_2$ laser energy at a wavelength of $10.6{\mu}m$. Therefore, the laser excites silane, dissociating it to Si radical. Finally, nucleation and growth of the Si radicals generates various silicon nanoparticle. In addition, researchers can introduce hydrogen gas into silane to control the characteristics of silicon nanoparticles. Changing the hydrogen flow rate affects the nanoparticle size and crystallinity of silicon nanoparticles. Specifically, a high hydrogen flow rate produces small silicon nanoparticles and induces low crystallinity. We attribute these characteristics to the low density of the Si precursor, high hydrogen passivation probability on the surface of the silicon nanoparticles, and low reaction temperature during the synthesis.

Influential Factors for NO_X Reduction Performance of Urea-SCR System for an In-use Medium Duty Diesel Engine (중형 운행 경유차용 Urea-SCR 시스템의 아랫첨자 $NO_X$ 저감성능에 미치는 영향인자)

  • Kim, Hong-Suk;Jeong, Young-Il;Song, Myoung-Ho;Lee, Seang-Wock;Park, Hyun-Dae;Hwang, Jae-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.154-161
    • /
    • 2009
  • This study is a part of project of urea-SCR system development for an in-use medium duty diesel engine. This study shows the effect of ammonia oxidation catalyst and SCR volume on $NO_X$ reduction performance. When AOC(Ammonia Oxidation Catalyst) is not used, the urea injection should be controlled accurately to prevent $NH_3$ slip. However, it is found that the accurate $NH_3$ slip control is not easy without AOC in real engine operating conditions, because $NH_3$ and $NO_X$ reaction characteristics change with many factors such as exhaust gas temperature and $NH_3$ absorbance on SCR. SCR volume is also one of important design parameters. This study shows that $NO_X$ reduction efficiency increases with increase of SCR volume especially at high space velocity and low exhaust gas temperature conditions. Additionally, this paper shows the emissions of EURO-2 medium duty diesel engine can be improved to the level of EURO-5 with a DPF and urea-SCR system.

Reaction of Natural Manganese Dioxide with Hydrogen Sulfide at High-Temperature (고온에서 천연산 망간광석과 황화수소의 반응특성)

  • Shon, Byung-Hyun;Oh, Kwang-Joong;Kim, Young-Sick
    • Clean Technology
    • /
    • v.2 no.1
    • /
    • pp.69-79
    • /
    • 1996
  • Sulfur emission control in coal gasification plants implies the removal of $H_2S$ from the fuel gas in the gas clean-up system. In this study, the effects of particle size of sorbents, temperature of sulfidation and sorbent characteristics on the $H_2S$ removal efficiency of manganese ore were investigated. Experimental results showed that the removal efficiency of $H_2S$ was optimum when the temperature was about $700^{\circ}C$. And that the smaller particle size, the higher the $H_2S$ removal efficiency, but that was not effective very much. As the temperature increases, the reactivity of sorbents has lowered because agglomeration of sorbents increased the intraparticle transport resistance. This phenomenon was confirmed by SEM photographs. The equilibrium ratio ($P_{H_2O}/P_{H_2S}$) obtained by experiments is represented as a ${\log}(P_{H_2O}/P_{H_2S})=5653/T-3.7909$. It was showed that the natural manganese ore could be used as a sorbent because its capacity for $H_2S$ removal is equivalent to the eariler developed sorbents.

  • PDF