• 제목/요약/키워드: Gas Reaction Control

검색결과 223건 처리시간 0.028초

온도에 따른 암모니아 용액에 의한 CO2 포집 반응의 변화 양상 (Variation of the CO2 Capture Reaction by Ammonia Solution with Temperature)

  • 김수연;최예슬;김동수
    • 한국물환경학회지
    • /
    • 제27권6호
    • /
    • pp.896-904
    • /
    • 2011
  • The features of the capture reaction of $CO_2$ by ammonia solution have been investigated along with the effect of temperature on the reaction based upon computer program-utilizing calculation and thermodynamic estimation. The stable region of $CO{_3}^{2-}$ was observed to increase with temperature and the change of the stable region of $CO{_3}^{2-}$ with temperature was greater than the temperature variation of the stable region of other carbonate species. The distribution diagram for $NH_4{^+}-NH_3$ system was constructed and the rise of temperature resulted in the decrease of the stability of $NH_4{^+}$ ion, which was thought to be due to the endothermic nature of its acidic dissociation. Considering the introduction of $Ca^{2+}$ ion in the carbon capture reaction by $NH_4{^+}$, the temperature was observed to be important in the determination of the order of reaction between carbonate ion and these cations. The removal process of $CO_2$ gas by ammonia solution was presumed to occur in open system and the temperature variations of the concentration of carbonate system species along with their total concentration were calculated for the proper control and design of the real process.

2차 공기분사 및 냉각수제어에 의한 SI 엔진의 탄화수소 배기저감 (SI Engine Hydrocarbon Emissions Reduction with Secondary Air Injection and Coolant Control)

  • 박기수;조영진;박심수
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.51-58
    • /
    • 2000
  • It is well known that the majority of the emissions measured from vehicle exhaust in the US Federal Test Procedure(FTP-75) are emitted during the first 60 seconds. This paper describes an experimental study on SI engine emissions reduction after cold start with interval secondary air injection and coolant control. Secondary air injection after cold start to reduce exhaust emissions causes an exothermic reaction at the exhaust port and gives sufficient air to the catalyst. For that reason engine-out emissions oxidized in the exhaust port and the rapid heating of a catalytic converter after cold start with CSAI and ISAI are estimated. The influence of the coolant temperature on SI engine emissions has been estimated. In the present studycoolant control of the cylinder head tempeature is used to investigate the effect of coolant temperature on SI engine emissions. The results show that engine-out hydrocarbon and carbon monoxide emissions are considerably reduced with interval secondary air injection and coolant control.

  • PDF

Determination of diphencyprone and its photo-degradation product incompounded preparations using HPLC

  • Cho, Chong Woon;Kim, Kyung Tae;Park, Miyeon;Kim, Jin Seog;Lee, Jinbok;Kang, Jong Seong
    • 분석과학
    • /
    • 제31권5호
    • /
    • pp.179-184
    • /
    • 2018
  • Diphencyprone (DPCP) is frequently used as a compounded preparation in dermatology for the treatment of alopecia and recalcitrant warts based on the immune reaction of skin allergy. However, DPCP is a non-recognized agent in Pharmacopoeia, because there are no criteria or analytical method for quality control of its powder and formulation. DPCP is unstable under light irradiation because as it easily decomposes to diphenylacetylene (DPA). This study aims to develop a simultaneous HPLC analytical method for analyzing DPCP and DPA in the raw materials and compounded preparation. The method required a C18 column ($250{\times}4.6mm$, $5{\mu}m$) at $40^{\circ}C$ with a mobile phase of (A) 0.01 M phosphoric acid in water and (B) acetonitrile at UV 220 nm. DPA conversion to DPCP in the powder and compounded preparations was accelerated after light exposure for 60 min. In addition, this resulted in different patterns depending on the wavelength of light and the formulation. That is, DPCP in compounded preparation was more unstable than that in the powder. However, the DPCP formulation in amber bottles was observed to remain stable, although the measured concentrations of DPCP were somewhat different from the nominal concentration of the compounded preparations. The control of the exact concentration is required for effective disease treatment, depending on the state of the patient. In conclusion, these results will be useful for the recognition of DPCP in Pharmacopoeia and new DPCP formulation development to prevent photodecomposition.

Effect of Rhodophyta extracts on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations

  • Lee, Shin Ja;Shin, Nyeon Hak;Jeong, Jin Suk;Kim, Eun Tae;Lee, Su Kyoung;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권1호
    • /
    • pp.54-62
    • /
    • 2018
  • Objective: Due to the threat of global warming, the livestock industry is increasingly interested in exploring how feed additives may reduce anthropogenic greenhouse gas emissions, especially from ruminants. This study investigated the effect of Rhodophyta supplemented bovine diets on in vitro rumen fermentation and rumen microbial diversity. Methods: Cannulated Holstein cows were used as rumen fluid donors. Rumen fluid:buffer (1:2; 15 mL) solution was incubated for up to 72 h in six treatments: a control (timothy hay only), along with substrates containing 5% extracts from five Rhodophyta species (Grateloupia lanceolata [Okamura] Kawaguchi, Hypnea japonica Tanaka, Pterocladia capillacea [Gmelin] Bornet, Chondria crassicaulis Harvey, or Gelidium amansii [Lam.] Lamouroux). Results: Compared with control, Rhodophyta extracts increased cumulative gas production after 24 and 72 h (p = 0.0297 and p = 0.0047). The extracts reduced methane emission at 12 and 24 h (p<0.05). In particular, real-time polymerase chain reaction analysis indicated that at 24 h, ciliate-associated methanogens, Ruminococcus albus and Ruminococcus flavefaciens decreased at 24 h (p = 0.0002, p<0.0001, and p<0.0001), while Fibrobacter succinogenes (F. succinogenes) increased (p = 0.0004). Additionally, Rhodophyta extracts improved acetate concentration at 12 and 24 h (p = 0.0766 and p = 0.0132), as well as acetate/propionate (A/P) ratio at 6 and 12 h (p = 0.0106 and p = 0.0278). Conclusion: Rhodophyta extracts are a viable additive that can improve ruminant growth performance (higher total gas production, lower A/P ratio) and methane abatement (less ciliateassociated methanogens, Ruminococcus albus and Ruminococcus flavefaciens and more F. succinogenes.

NO2 Sensing Characteristics of Si MOSFET Gas Sensor Based on Thickness of WO3 Sensing Layer

  • Jeong, Yujeong;Hong, Seongbin;Jung, Gyuweon;Jang, Dongkyu;Shin, Wonjun;Park, Jinwoo;Han, Seung-Ik;Seo, Hyungtak;Lee, Jong-Ho
    • 센서학회지
    • /
    • 제29권1호
    • /
    • pp.14-18
    • /
    • 2020
  • This study investigates the nitrogen dioxide (NO2) sensing characteristics of an Si MOSFET gas sensor with a tungsten trioxide (WO3) sensing layer deposited using the sputtering method. The Si MOSFET gas sensor consists of a horizontal floating gate (FG) interdigitated with a control gate (CG). The WO3 sensing layer is deposited on the interdigitated CG-FG of a field effect transistor(FET)-type gas sensor platform. The sensing layer is deposited with different thicknesses of the film ranging from 100 nm to 1 ㎛ by changing the deposition times during the sputtering process. The sensing characteristics of the fabricated gas sensor are measured at different NO2 concentrations and operating temperatures. The response of the gas sensor increases as the NO2 concentration and operating temperature increase. However, the gas sensor has an optimal performance at 180℃ considering both response and recovery speed. The response of the gas sensor increases significantly from 24% to 138% as the thickness of the sensing layer increases from 100 nm to 1 ㎛. The sputtered WO3 film consists of a dense part and a porous part. As reported in previous work, the area of the porous part of the film increases as the thickness of the film increases. This increased porous part promotes the reaction of the sensing layer with the NO2 gas. Consequently, the response of the gas sensor increases as the thickness of the sputtered WO3 film increases.

LC/MS/MS를 이용한 sildenafil 및 그 유사체 분석 (Analysis of Sildenafil and its Analogues by LC/MS/MS)

  • 명승운;박서희;조현우
    • 분석과학
    • /
    • 제16권6호
    • /
    • pp.488-498
    • /
    • 2003
  • LC/MS/MS를 이용하여 발기부전 (impotence) 치료제인 sildenafil 및 유사체인 homosildenafil, vardenafil, tadalafil을 분석하는 방법을 확립하였다. 이온화 방법으로는 electrospray ionization (ESI)와 atmospheric pressure chemical ionization (APCI) 방법을 사용하였으며 최대 감도와 재현성을 나타내는 조건을 찾기 위하여 여러 가지 파라미터를 변화시켜서 비교하였다. MRM (multiple reaction monitoring)을 위한 적절한 생성이온 (product ion)을 얻기 위하여 ESI 방법에서는 capillary voltage, cone voltage, extractor, entrance, RF lens를 변화시켰으나 전구이온 (precursor ion)을 제외한 뚜렸한 토막이온 (fragment ion)은 생성되지 않았다. 한편, APCI 방법의 경우 entrance, collision energy, exit, corona voltage, cone voltage, extractor, RF lens, cone gas, desolvation gas를 변화시켰을 때 다른 파라미터들의 변화에 따른 전구이온을 제외한 product ion 생성 패턴의 변화는 감지되지 않고 단지 RF lens 조건의 변화에서 precursor ion을 비롯한 토막이온들의 생성과 더불어 S/N의 증가로 인한 검출 한계의 향상이 나타났다. HPLC에서의 최적 분리 조건과 질량 분석기에서 최대 감도를 나타내는 이동상 조건도 조사되었는데 10 mM ammonium formate (pH 4.8):acetonitrile=70:30 의 등용매 용리조건이 좋은 감도를 나타내었으며, 최적의 방법인 ESI-MRM 방법에서 검출한계 (S/N>5)는 sildenafil은 $0.10{\mu}g/mL$, homosildenafil은 $0.025{\mu}g/mL$, vardenafil은 $0.025{\mu}g/mL$ 그리고 tadalafil은 $0.25{\mu}g/mL$이었다.

Cu-Cu2O계 공융액상을 활용한 Cu/AlN 직접접합 (Direct Bonding of Cu/AlN using Cu-Cu2O Eutectic Liquid)

  • 홍준성;이정훈;오유나;조광준;류도형;오승탁;현창용
    • 한국분말재료학회지
    • /
    • 제20권2호
    • /
    • pp.114-119
    • /
    • 2013
  • In the DBC (direct bonding of copper) process the oxygen partial pressure surrounding the AlN/Cu bonding pairs has been controlled by Ar gas mixed with oxygen. However, the direct bonding of Cu with sound interface and good adhesion strength is complicated process due to the difficulty in the exact control of oxygen partial pressure by using Ar gas. In this study, we have utilized the in-situ equilibrium established during the reaction of $2CuO{\rightarrow}Cu_2O$ + 1/2 $O_2$ by placing powder bed of CuO or $Cu_2O$ around the Cu/AlN bonding pair at $1065{\sim}1085^{\circ}C$. The adhesion strength was relatively better in case of using CuO powder than when $Cu_2O$ powder was used. Microstructural analysis by optical microscopy and XRD revealed that the interface of bonding pair was composed of $Cu_2O$, Cu and small amount of CuO phase. Thus, it is explained that the good adhesion between Cu and AlN is attributed to the wetting of eutectic liquid formed by reaction of Cu and $Cu_2O$.

코로나/촉매 일체형 시스템의 탈질특성에 관한 연구 (A Study on DeNOx Characteristics of Corona/Catalyst Hybrid System)

  • 장홍기;최창식;신중욱;지영연;홍민선;정윤진
    • 한국대기환경학회지
    • /
    • 제23권6호
    • /
    • pp.699-707
    • /
    • 2007
  • This study was carried out to investigate the reaction characteristics of corona/catalyst hybrid $DeNO_x$ process. The experiments were performed by using the multi-staged pin-to-hole type corona reactor which is enable to control the pin-to-hole gap and to insert the catalyst. Also, used for this study, were catalysts which commercially used Pt, Pd and $TiO_2$, and oxygen and hydrocarbon ($C_2H_4$) as reagents. In the syn-gas test, at high temperatures in the range of $100{\sim}200^{\circ}C$, the corona-only $DeNO_x$ process did not reduce the $NO_x$ concentration effectively. However in the presence of ethylene and oxygen as reagents, the $NO_x$ removal efficiency was better at these high temperatures than corona-only $DeNO_x$ process. In addition, coronal catalyst hybrid process with $TiO_2$ showed more efficiency of $NO_x$ removal than Pt and Pd catalyst, because the $TiO_2$ catalyst was more active than Pt and Pd catalyst to converse the $NO_2$ to $HNO_3$. Furthermore, at the condition of real diesel exhaust gas, the $DeNO_x$ efficiency of corona/catalyst hybrid process was not good at higher reaction temperature and plasma density.

Antisense gibberellin 3β-hydroxylase발현 형질전환벼 (Antisense GA 3β-Hydroxylase Gene Transferred to Rice Plants.)

  • 강용원;윤용휘;김길웅;이인중;신동현
    • 생명과학회지
    • /
    • 제14권4호
    • /
    • pp.644-649
    • /
    • 2004
  • GA 생합성에 결정적 역할을 하는 GA 3$\beta$-hydroxylase를 pIG121-Hm 벡터에 GUS유전자를 빼고 antisense로 클로닝하여 이를 동진벼에 도입한 결과 17개체의 절간신장이 억제된 형질전환한 식물체를 얻을 수 있었다. 일반 재배 동진벼를 대조군으로 하여 비교하였을때 antisense GA 3$\beta$-hydroxylase 유전자가 형질 도입된 식물체의 획득형질은 평균적으로 대조군에 비해 절간 신장의 억제가 확인되었다. 절간신장의 억제가 보인 개체의 엽육조직을 co취하여 Southen blot hybridization분석 결과 3개의 line에서 모두 single copy로 도입된 것으로 나타났다. 이로써$T_o$ 식물체 내에 antisense GA 3$\beta$-hydroxylase 유전자를 내포하고 있는 것으로 확인되었다. 이것은 antisense GA 3$\beta$-hydroxylase 유전자가 생체내에서 직접 또는 간접적으로 GA 3$\beta$-hydroxylase유전자의 발현에 관여한 것이라 사료되어진다.

에틸렌 확산화염 내 질소 혼합이 매연 생성 특성에 미치는 영향 (Effect of N2 Diluent on Soot Formation Characteristics in Ethylene Diffusion Flames)

  • 김준수
    • 해양환경안전학회지
    • /
    • 제29권4호
    • /
    • pp.356-362
    • /
    • 2023
  • 기후 변화에 따른 위험성은 전 세계적으로 오랜 기간 강조되고 있으며, 이를 극복하기 위한 노력은 해운분야에서도 국제해사 기구를 중심으로 이어지고 있다. 연소과정에서 발생한 매연을 제어하기 위하여 매연 생성 특성에 관한 연구는 필수적이다. 본 연구에서는 에틸렌 가스를 기반으로 한 대향류 확산화염에서 불활성 기체인 질소를 혼합하여 화염온도, 화염형태, 매연 생성 관련된 화학종의 상태변화를 확인하기 위해 광소멸법과 화학반응 수치해석을 수행하였다. 연구 결과. 질소의 혼합비율이 증가함에 따라 화염온도 감소와 매연체적분율 감소로 이루어졌다. 매연 입자가 분포하는 구간도 감소하였으며, 30% 이상 혼합비율이 높아지면 체적분율 감소율이 감소하였다. 매연 성장에 관여하는 화학종들의 몰분율도 감소하였다. HACA 반응 관련 화학종은 탄화수소 연료 비율에 따라 영향을 받으나, 홀수탄소 경로 관련 화학종은 탄화수소 연료 비율뿐만 아니라 화염온도 영향을 받는 것을 확인하였다.