• Title/Summary/Keyword: Gas Reaction Control

Search Result 223, Processing Time 0.023 seconds

Pressure-Temperature Diagram of Critical Condition for Disproportionation of Nd-Fe-B Alloy in Hydrogen

  • Kwon, H.W.;Kim, D.H.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.155-158
    • /
    • 2010
  • The HDDR (hydrogenation, disproportionation, desorption, and recombination) process can be used as an effective way of converting a no coercivity Nd-Fe-B ingot material, with a coarse $Nd_2Fe_{14}B$ grain structure, to a highly coercive one with a fine grain structure. Careful control of the HDDR process can lead to an anisotropic powder with good $Nd_2Fe_{14}B$ grain texture; the most critical step for inducing texture is disproportionation. The critical conditions (hydrogen pressure and temperature) for the disproportionation reaction of fully hydrogenated $Nd_{12.5}Fe_{81.1-(x+y)}B_{6.4}Ga_xNb_y$ (x = 0 or 0.3, y = 0 or 0.2) alloys, in different atmospheres of pure hydrogen and a mixed gas of hydrogen and argon, was investigated with TPA (thermopiezic analyser). From this, the hydrogen pressure-temperature diagram showing the critical conditions was established. The critical disproportionation temperature of the fully hydrogenated $Nd_{12.5}Fe_{81.1-(x+y)}B_{6.4}Ga_xNb_y$ alloys was slightly increased as the hydrogen pressure decreased in both pure hydrogen and mixed gas. The critical disproportionation temperature of the hydrogenated alloys was higher in the mixed gas than in pure hydrogen. Addition of Ga and Nb increased the critical disproportionation temperature of the fully hydrogenated Nd-Fe-B alloys.

The Control of Side Reactions in Bunsen Reaction Section of Sulfur-Iodine Hydrogen Production Process (황-요오드 수소 생산 공정의 분젠 반응 부분에서 부반응 제어)

  • Lee, Kwang-Jin;Hong, Dong-Woo;Kim, Young-Ho;Park, Chu-Sik;Bae, Ki-Kwang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.490-497
    • /
    • 2008
  • For continuous operation of the sulfur-iodine(SI) thermochemical cycle, which is expected practical method for massive hydrogen production, suggesting operation conditions at steady state is very important. Especially, in the Bunsen reaction section, the Bunsen reaction as well as side reactions is occurring simultaneously. Therefore, we studied on the relation between the variation of compositions in product solution and side reactions. The experiments for Bunsen reaction were carried out in the temperature range, from 268 to 353 K, and in the $I_2/H_2O$ molar ratio of $0.094{\sim}0.297$ under a continuous flow of $SO_2$ gas. As the result, sulfur formed predominantly with increasing temperature and decreasing $I_2/H_2O$ molar ratios. The molar ratios of $H_2O/H_2SO_4$ and $HI/H_2SO_4$ in global system were decreased as the more side reaction occurred. A side reactions did not appear at $I_2/H_2O$ molar ratios, saturated with $I_2$, irrespective of the temperature change. We concluded that it caused by the increasing stability of an $I_{2x}H^+$ complex and a steric hindrance with increasing $I_2/HI$ molar ratios.

A Study on the Reaction between Carbon Monoxide and Nitric Oxide on Platinum Catalyst (백금촉매상에서 일산화탄소와 일산화질소의 반응에 관한 연구)

  • Park, Youn-Seok;Kim, Young-Ho;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.207-214
    • /
    • 1990
  • The catalytic reaction between CO and NO on polycrystalline Pt surface, which is very important in the development of catalyst for automobile exhaust gas control, has been studied using thermal desorption spectrometry(TDS) and steady-state experiment under ultra-high vacuum(UHV) conditions. With the pressures of CO and NO of each $1{\times}10^{-7}Torr$, the $CO_2$ formation rate showed a maximum at 560K. At the reaction temperature of 560K and the NO pressure of $1{\times}10^{-7}Torr$, the production of $CO_2$ was first order in $CO_2$ was first order in CO pressure below $1.35{\times}10^{-7}Torr$ of CO pressure whereas at higher CO pressures the rate became minus 0.3 order in CO. But the efforts of reactant pressure on the reaction was understood in consideration of the surface concentrations of adsorbates. With the results, we proposed a new reaction mechanism for this reaction.

  • PDF

A Study of Hydrodynamics and Reaction Characteristics in Relation to the Desulfurization Temperatures of Zn-Based Solid Sorbent in the Lab-scale High Pressure and High Temperature Desulfurization Process (실험실규모 고온고압건식탈황공정의 수력학적 특성 및 탈황온도에 따른 아연계 탈황제의 반응특성 연구)

  • Kyung, Dae-Hyun;Kim, Jae-Young;Jo, Sung-Ho;Park, Young Cheol;Moon, Jong-Ho;Yi, Chang-Keun;Baek, Jeom-In
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.492-498
    • /
    • 2012
  • In this study, hydrodynamics such as solid circulation rate and voidage in the desulfurizer and the reaction characteristics of Zn-based solid sorbents were investigated using lab-scale high pressure and high temperature desulfurization process. The continuous HGD (Hot Gas Desulfurization) process consist of a fast fluidized bed type desulfurizer (6.2 m tall pipe of 0.015 m i.d), a bubbling fluidized bed type regenerator (1.6 m tall bed of 0.053 m i.d), a loop-seal and the pressure control valves. The solid circulation rate was measured by varying the slide-gate opening positions, the gas velocities and temperatures of the desulfurizer and the voidage in the desulfurizer was derived by the same way. At the same gas velocities and the same opening positions of the slide gate, the solid circulation rate, which was similar at the temperature of $300^{\circ}C$ and $550^{\circ}C$, was low at those temperatures compared with a room temperature. The voidage in the desulfurizer showed a fast fluidized bed type when the opening positions of the slide gate were 10~20% while that showed a turbulent fluidized bed type when those of slide gate were 30~40%. The reaction characteristics of Zn-based solid sorbent were investigated by different desulfurization temperatures at 20 atm in the continuous operation. The $H_2S$ removal efficiency tended to decrease below the desulfurization temperature of $450^{\circ}C$. Thus, the 10 hour continuous operation has been performed at the desulfurization temperature of $500^{\circ}C$ in order to maintain the high $H_2S$ removal efficiency. During 10 hour continuous operation, the $H_2S$ removal efficiency was above 99.99% because the $H_2S$ concentration after desulfurization was not detected at the inlet $H_2S$ concentration of 5,000 ppmv condition using UV analyzers (Radas2) and the detector tube (GASTEC) which lower detection limit is 1 ppmv.

Characteristics of Fluidized Bed Type Gasification of Kideco Coal (키데코탄의 유동층 가스화 반응 특성)

  • Bae, Dal-Hee;Jo, Sung-Ho;Shun, Do-Won;Moon, Young-Sub
    • Journal of Energy Engineering
    • /
    • v.16 no.1 s.49
    • /
    • pp.32-39
    • /
    • 2007
  • Coal pyrolysis processes vary with the origin and rank of coal. It is difficult to generalize the characteristics of coal pyrolysis reaction because the process consists of numerous reactions including pyrolysis, gasification, and combustion. To find out the optimum process condition it is necessary to determine the condition fur each coal from the smatter scale experiment. In this study pressurized ($2kg_{f}/cm^{2}$) fluidized bed, low temperature ($735{\sim}831^{\circ}C$) gasification using Kideco coal was performed. The reaction condition and product gas composition were determined from the variables including steam flow rate, coal feed rate and air flow rate. Optimum reaction condition was determined from the concentrations of $H_{2}$, and CO in the product gas. The ratio of air/coal was 4.45 and that of steam/coal was 0.21 respectively. The concentrations of CO and $H_{2}$ decreased with the increase of $CO_{2}$. It is important to control the feed rates of coal and steam because the reaction temperature rapidly increased when the combustion reaction dominates over the gasification reaction. The concentrations of CO and $H_{2}$ were 18%, 17% respectively from the continuous operating condition.

The Characteristics of the Treatment of Pollutants ($SO_2$, NOx) Using Surface Discharge Induced Plasma Chemical Process (SPCP를 이용한 오염물질 ($SO_2$, NOx) 처리 특성)

  • 봉춘근;부문자
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.4
    • /
    • pp.333-342
    • /
    • 1998
  • Plasma process has great possibilities to remove SOx, NOx simultaneously with high treatment efficiency and is expected to be suitable for small or middle plants. It was accomplished to evaluate SO2, NOx control possibility and achieve basic data to control pollutants by use of Surface Discharge Induced Plasma Chemical Process (SPCP) in this study. O3 generation characteristics by discharge of a plate was proportional to O2 concentration and power consumption and inversely proportional to temperature and humidity, In case of dry air, NOx was highly generated by N2 and O2 in air during the plasma discharge process but it was decreased considerably as H2O was added. SO2 removal efficiency was very high, and removal rate was 170,350 mEA at 30,50 watt respectively in flue gas which is usually contain HIO. NOx removal efficiency was about 57% at 40 watt power consumption with 7.5% humidity. It is estimated that H2O has an important role in reaction mechanism with pollutants according to plasma discharge.

  • PDF

Removal of Dissolved Oxygen from the Make-up Water of NPP Using Membrane-based Oxygen Removal System

  • Chung, Kun-Ho;Kang, Duck-Won;Hong, Sung-Yull
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.541-547
    • /
    • 1999
  • Corrosion control, in the end-shield cooling system of Wolsung Nuclear Power Plant, is directly related to the control of dissolved oxygen (DO). The current method, being used to deoxygenate the end-shield cooling water, is a chemical treatment by addition of reducing agent, hydrazine, to react with DO. This method has several limitations including high reaction temperature of hydrazine , unwanted explosive hydrogen gas production, and its intrinsic harmful property. A new approach to remove DO using a membrane-based oxygen removal system (MORS) was tried to overcome limitations of the hydrazine treatment. The DO removal efficiency of the MORS was found to be in the range 87% to 98%: The higher vacuum, the lower water flow rate and the higher water temperature tend to increase the DO removal efficiency.

  • PDF

Membrane reactors in gas phase oxidations

  • Bottino, A.;Capannelli, G.;Comite, A.;Felice, R.Di
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.33-36
    • /
    • 2003
  • This research was aimed at developing new catalytic membrane reactors to be used for : i) partial oxidation of toluene (to benzaldehyde and benzoic acid) ii) oxidative dehydrogenation of propane iii) complete oxidation of propane and toluene. The reactor is particularly useful for the optimisation and the industrial development of heterogeneous catalytic processes, particularly for those processes where it is necessary to control the reactants stoichiometry in the reaction zone. This control limits consecutive reactions, thus obtaining high selectivity with industrially interesting conversions. This presentation will concentrate on the partial oxidation of toluene.

  • PDF

The Effects of Sulfur on the Catalytic Reaction between Carbon Monoxide and Nitric Oxide on Polycrystalline Platinum Surface (다결정 백금표면에서의 일산화탄소와 일산화질소의 촉매반응에 미치는 황의 영향)

  • Park, Youn-Seok;Kim, Young-Ho;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.215-223
    • /
    • 1990
  • The effects of sulfur on the catalytic reaction between CO and NO on polycrystalline Pt surface, which is very important in the development of catalyst for automobile exhaust gas control, have been studied using thermal desorption spectrometry(TDS) under ultra-high vacuum(UHV) conditions. Sulfur weakened both the adsorptions of CO and NO by direct site blocking and indirect electronic effect. S(a) desorbing below 800 K gave little effect on reaction activity whereas S(a) desorbing above 800 K, which adsorbs as an atomic state, gave much effect on it. The adsorbed sulfur existed on the surface of platinum in the form of islands, and also reduced the adsorption energies of adsorbates by the long-ranged electronic effect. The platinum catalyst in the reaction between CO and NO was poisoned selectively by S(a), poisoning firstly the active sites of this reaction.

  • PDF

Phase Separation Characteristics via Bunsen Reaction in Sulfur-Iodine Thermochemical Hydrogen Production Process (SI 열화학 수소 제조 공정에서 분젠 반응을 통한 상 분리 특성)

  • Lee, Kwang-Jin;Kim, Young-Ho;Park, Chu-Sik;Bae, Ki-Kwang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.386-393
    • /
    • 2008
  • The Sulfur-iodine(SI) thermochemical cycle is one of the most promising methods for massive hydrogen production. For the purpose of continuous operation of SI cycle, phase separation characteristics into two liquid phases ($H_2SO_4$-rich phase and $HI_x$-rich phase) were directly investigated via Bunsen reaction. The experiments for Bunsen reaction were carried out in the temperature range, from 298 to 333 K, and in the $I_2/H_2O$ molar ratio of $0.109{\sim}0.297$ under a continuous flow of $SO_2$ gas. As the results, solubility of $SO_2$, decreased with increasing the temperature, had considerable influence on the global composition in the Bunsen reaction system. The amounts of impurity in each phase(HI and $I_2$ in $H_2SO_4$-rich phase and $H_2SO_4$ in $HI_x$-rich phase) were decreased with increasing $H_2SO_4$ molar ratio and temperature. To control the amounts of impurity in $HI_x$-rich phase, temperature is a factor more important than $I_2/H2_O$ molar ratio. On the other hand, the affinity between $HI_x$ and $H_2O$ was increased with increasing $I_2/H2_O$molar ratio.