• Title/Summary/Keyword: Gas Purification

Search Result 219, Processing Time 0.026 seconds

Development of a Monitoring and Control System in Gas Purification Process (가스 정제공정의 감시 제어시스템 연구)

  • 조택선;양종화
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.313-317
    • /
    • 1996
  • This work deals with description of gas purifing system to product high pure helium gas using low temperature absorption. The system controls temperature of heaters, open/close of solenoid valves and levels of liquid nitrogen to purify a raw gas and continuously products purified gas with perfoming alternatively purification and regeneration. We develop the monitoring and control program to monitor the gas purification process on real-time and control the process time with checking the impurities in purified gas. From the result of system operation, the developed monitoring and control system continuously products high pure helium gas with reducing impurities in raw gas to permitted limits(less than 0.01 ~ 0.05 ppm)

  • PDF

How to Eliminate CO, CO2 and CH4 in H2 & Inert Gas -Possibility of Fuel Cell Application- (수소와 불활성 가스 중 일산화탄소, 이산화탄소, 메탄 제거에 관한 연구 -연료전지에의 적용 가능성-)

  • Lee, Taek-Hong;Cheon, Young-Ki
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.3
    • /
    • pp.220-227
    • /
    • 2004
  • The purpose of this paper is, based on the theoretical background of the principle of gas purification and absorption, and the absorbing ability of metals, to syudy the efficiency of gas purification of inorganic gases using Zr alloys, so as to contribute to the IT industry. To produce and distribute gas with high purity and ultra-high purity, different types of gas purifier are currently being used: distillation type, getter type, catalyst type, absorption at low-temperature type, and membrane separation equipment. From the different purification methods mentioned above, the getter type gas purifier is capable of not only high performance and capacity but also P.O.U(Point Of Use) method. The key of the getter type gas purifier is its efficiency of gas purification, which is the subject chosen for this study.

Anaerobic Digester Gas Purification for the Fuel Gas of the Fuel Cell (연료전지 연료가스인 하수처리장 소화가스정제)

  • Lee, Jong-Gyu;Jun, Jae-Ho;Park, Kyu-Ho;Choi, Doo-Sung;Park, Jae-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.2
    • /
    • pp.164-170
    • /
    • 2007
  • The Tancheon wastewater treatment plant(WWTP) in Seoul using anaerobic digestion to reduce the outlet sludge produces anaerobic digester gas which contains 65% $CH_4$ and 35% $CO_2$. The gas purification equipment was installed and operated to use Anaerobic Digester Gas(ADG) as a fuel for molten carbonate fuel cell(MCFC). The processes consist of the desulfurizer and the adsorption tower to remove $H_2S$ and siloxane in the gas. The gas purification equipment removed virtually over 95% of $H_2S$ and over 99% of siloxane. Results has demonstrated that the fuel cell can produce electrical output and hot water with negligible air emissions of CO, NOx and $SO_2$. The site provides the first opportunity in Korea for demonstrating Molten carbonate fuel cell(MCFC) which the digester gas was applied to the fuel gas.

A Study on Quantitative Risk Assessment of Off-gas based Hydrogen Purification Facilities (부생가스 기반 수소 정제시설의 정량적 위험성 평가에 관한 연구)

  • Hyun-Gook Shin;Min-Joo Kim;Ji-Woon Jeong;Sang-Jun Ha;Jong-Ho Choi
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.110-115
    • /
    • 2023
  • According to the Off-Gas Generation and Use Status Report (2015), Off-gas from the steel industry is estimated to be 80 million tons per year in Korea. If this is purified, large amounts of hydrogen can be produced, so active research and development related to hydrogen purification facilities is underway. In this study, a quantitative risk assessment (QRA) was conducted by analyzing the components of a off-gas based hydrogen purification facility and investigating risk factors. The risk analysis results were determined to be at an acceptable level and will be used as basic data to improve the safety of facilities considering the risks of hydrogen.

Pressure Swing Adsorption Based Hydrogen Purification Vessel 3D Modeling and Feasibility Study (Pressure Swing Adsorption 기반 수소정제용기 3차원 모델링 및 타당성 검증 연구)

  • CHA, YOHAN;CHOI, JAEYOO;JU, HYUNCHUL
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.4
    • /
    • pp.197-204
    • /
    • 2021
  • Pressure swing adsorption is a purification process which can get pure hydrogen. The purification process is composed of four process: compression, adsorption, desorption and discharge. In this study the adsorption process was simulated by using the Fluent and validated with experimental results. A gas used in experiment is composed of H2, CO2, CH4, and CO. Adsorption process conducted under 313 kelvin and 3 bar and bituminous-coal-based (BPL) activated carbon was used as the adsorbent. Langmuir model was applied to explain the gas adsorption. And diffusion of all the gases was controlled by micro-pore resistances. The result shows that, the most adsorbed gas was carbon dioxide, followed by methane and carbon monoxide. And carbon monoxide took the least amount of time to reach the maximum adsorption amount. The molar fraction of the off-gas became the same as the molar fraction of the gas supplied from the inlet after adsorption reached the equilibrium.

Germicidal Effect of Ozone Cleaning System for Pigpens Air (오존 정화시스템을 이용한 축사내 공기정화 효과)

  • Won, Seung-Ho;Kim, Young-Kwon
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.1
    • /
    • pp.13-18
    • /
    • 2010
  • This research investigated the exhaust gas purification system of gaseous ozone for pigpens. This system is applied to exhaust the gas outside after purification with ozone. This is very effective for purification and simple. And because this is not set in the pigpens, this system is not influence of pollution gas. This is effected to extend the life time of this system and this system is applied for non-window pigpens which does not need the ventilation.

Emission characteristics of Natural Gas Fueled Vehicl and its Purification Technologies (천연가스 자동차의 Emission 배출특성 및 저감법)

  • 최병철;이지연;손건석;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 1997
  • Experiments have been conducted to investigate emission characteristics of compressed natural gas fueled vehicle(CNGV) by the FTP 75 mode test. Its purification technologies were also investigated. It was found that CNGV was operated on the rich A/F condition by comparison with gasoline vehicle. The Pd catalyst was higher in methane purification performance than Pt and Pd/Pt/Rh catalysts. Up to 60% portion of the accumulative HC emissions(that contains above 80% methane) form CNGV occurs during the first phase of the FTP 75 mode. CO that is exhausted at rich conditions of the air-fuel ratio more than lean conditions should be used for the catalytic reduction of NOX, because the methane is not the effective reduction for NOX in the CNGV with 3-way catalyst system.

  • PDF

Odor Reduction Technology in Sewage Treatment Facility Using Biofilter with Reed Grass(Phragmites australls) (갈대(Phragmites australls)수초를 적용한 바이오필터에서의 하수처리시설 악취저감기술)

  • Chung, Jin-Do;Kim, Kyu-Yeol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.373-382
    • /
    • 2013
  • In this study, a biological odor treatment system was proposed to remove odor(foul smell) materials causing several problems in the closed sewage treatment plant. This odor treatment system was composed of a two-step biofilter system in one reactor. The two-step biofilter reactor was constructed with natural purification layer in upper part and artificial purification layer in lower part. The reed grasses of water purification plants were planted in the surface area and mixed porous ceramic media were filled with the lower part of biofilter reactor. By using the above experimental apparatus, the ammonia gas removal efficiency was attained to 98.3 % and the hydrogen sulfide gas removal efficiency was appeared more than 97.7 % which shows more effective than the conventional odor removal process.

Thermal Oxidative Purification of Detonation Nanodiamond in a Gas-Solid Fluidized Bed Reactor

  • Lee, Jae Hoon;Youn, Yong Suk;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.738-751
    • /
    • 2018
  • The effect of the reaction temperature and reaction time on the thermal oxidative purification quality of detonation nanodiamond (NDsoot) was investigated in a gas-solid fluidized bed reactor of a $0.10m-ID{\times}1.0m$-high stainless steel column with zirconia beads ($d_{SV}=99.2{\mu}m$). The carbon conversion increased with increasing the reaction temperature; however, when the reaction temperature was greater than 773 K, the carbon conversion did not increase. The content of $sp^3$-hybridized carbon at the reaction temperature of 703 K barely changed when the reaction time was more than 30 minutes, but at 773 K, the content decreased as preferred. At 703 K, the purification quality increased with the increasing reaction time; however, at 773 K, the purification quality increased up to 30 minutes and then decreased rapidly.

Development of Biogas Purification System for City Gas Supply (도시가스 용 바이오 가스 정제 시스템 개발)

  • Lee, Hyunjin;Ko, Sang-Wook;Lee, In-Dong;Jung, In Hee;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.61-67
    • /
    • 2019
  • Korea is natural gas importer which imports a lot quantities which 20% of the volume of US exports in 2018. Biogas which can satisfy gas demand and respond effectively to climate change, will be an alternative. However, only 20% of biogas production is sold, which is also not efficient and difficult to use. The purpose of this study develops an optimal purification system for supplying biogas as city gas. We develope an optimal system by analyzing biogas for system selection, finding cases for system design, developing scenario, and developing a cost - benefit tool.