• Title/Summary/Keyword: Gas Furnace

Search Result 605, Processing Time 0.024 seconds

A Study on Feasibility of the Phosphoric Paste Doping for Solar Cell using Newly Atmospheric Pressure Plasma Source (새로운 대기압 플라즈마 소스를 이용한 결정질 실리콘 태양전지 인(P) 페이스트 도핑에 관한 연구)

  • Cho, I-Hyun;Yun, Myoung-Soo;Jo, Tae-Hoon;Rho, Junh-Young;Jeon, BuII;Kim, In-Tae;Choi, Eun-Ha;Cho, Guang-Sup;Kwon, Gi-Chung
    • New & Renewable Energy
    • /
    • v.9 no.2
    • /
    • pp.23-29
    • /
    • 2013
  • Furnace and laser is currently the most important doping process. However furnace is typically difficult appling for selective emitters. Laser requires an expensive equipment and induces a structural damage due to high temperature using laser. This study has developed a new atmospheric pressure plasma source and research atmospheric pressure plasma doping. Atmospheric pressure plasma source injected Ar gas is applied a low frequency (a few 10 kHz) and discharged the plasma. We used P type silicon wafers of solar cell. We set the doping parameter that plasma treatment time was 6s and 30s, and the current of making the plasma is 70 mA and 120 mA. As result of experiment, prolonged plasma process time and highly plasma current occur deeper doping depth and improve sheet resistance. We investigated doping profile of phosphorus paste by SIMS (Secondary Ion Mass Spectroscopy) and obtained the sheet resistance using generally formula. Additionally, grasped the wafer surface image with SEM (Scanning Electron Microscopy) to investigate surface damage of doped wafer. Therefore we confirm the possibility making the selective emitter of solar cell applied atmospheric pressure plasma doping with phosphorus paste.

Synthesis of SiC Nanoparticles by a Sol-Gel Process (나노 실리카와 카본블랙이용 탄화열 반응으로 나노 SiC 합성 및 특성)

  • Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.246-249
    • /
    • 2013
  • Nano-sized ${\beta}$-SiC nanoparticles were synthesized combined with a sol-gel process and a carbothermal process. TEOS and carbon black were used as starting materials for the silicon source and carbon source, respectively. $SiO_2$ nanoparticles were synthesized using a sol-gel technique (Stober process) combined with hydrolysis and condensation. The size of the particles could be controlled by manipulating the relative rates of the hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) within the micro-emulsion. The average particle size and morphology of synthesized silicon dioxide was about 100nm and spherical, respectively. The average particles size and morphology of the used carbon black powders was about 20nm and spherical, respectively. The molar ratio of silicon dioxide and carbon black was fixed to 1:3 in the preparation of each combination. $SiO_2$ and carbon black powders were mixed in ethanol and ball-milled for 12 h. After mixing, the slurries were dried at $80^{\circ}C$ in an oven. The dried powder mixtures were placed in alumina crucibles and synthesized in a tube furnace at $1400{\sim}1500^{\circ}C$ for 4 h with a heating rate of $10^{\circ}C$/min under flowing Ar gas (160 cc/min) and furnace cooling down to room temperature. SiC nanoparticles were characterized by XRD, TEM, and SAED. The XRD results showed that high purity beta silicon carbide with excellent crystallinity was synthesized. TEM revealed that the powders are spherical shape nanoparticles with diameters ranging from 15 to 30 nm with a narrow distribution.

Heat Treatment of Cu0.9In0.7Ga0.3Se2 Powder Layer with a Mixture of Selenium and Ceramic Powder (셀레늄과 세라믹 혼합분말을 사용한 Cu0.9In0.7Ga0.3Se2 분말층의 소결거동 연구)

  • Song, Bong-Geun;Hwang, Yoonjung;Park, Bo-In;Lee, Seung Yong;Lee, Jae-Seung;Park, Jong-Ku;Lee, Doh-Kwon;Cho, So-Hye
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.115-119
    • /
    • 2014
  • $Cu(In,Ga)Se_2$ (CIGS) thin films have been used as a light absorbing layer in high-efficiency solar cells. In order to improve the quality of the CIGS thin film, often selenization step is applied. Especially when the thin film was formed by non-vacuum powder process, selenization can help to induce grain growth of powder and densification of the thin film. However, selenization is not trivial. It requires either the use of toxic gas, $H_2Se$, or expensive equipment which raises the overall manufacturing cost. Herein, we would like to deliver a new, simple method for selenization. In this method, instead of using a costly two-zone furnace, use of a regular tube furnace is required and selenium is supplied by a mixture of selenium and ceramic powder such as alumina. By adjusting the ratio of selenium vs. alumina powder, selenium vaporization can be carefully controlled. Under the optimized condition, steady supply of selenium vapor was possible which was evidently shown by large grain growth of CIGS within a thin powder layer.

The influence of heating rate on the carbonization of sulfuric acid-impregnated cellulose (황산첨가 셀룰로오스의 탄화에서 승온속도의 영향)

  • 김대영
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.1
    • /
    • pp.37-43
    • /
    • 2003
  • The influence factors for char yield in the carbonization process of natural cellulose are the carbonization temperature, the heating rate and the atmosphere in the furnace. In general, it is well known that the improvement of char yield is expected under the conditions of the lower carbonization temperature, the slower heating rate and the presence of inert gas in the furnace. In this study, it has been investigated the effect of the heating rate control with sulfuric acid as a dehydrating agent for the improvement of char yield in the carbonization process of natural cellulose. The cellulose treated with sulfuric acid has shown the weak dependency of heating rate in char yield, whereas the untreated cellulose has shown the strong dependency. These findings clearly suggest that it can be useful to control heating rate with appropriate dehydrating agent in the carbonization process to improve the char yield and shortening the carbonization time.

  • PDF

The Duel Fuel Combustion of Low Calorific Biomass Syngas with Fuel Oil (저열량 바이오매스 합성가스의 혼소특성)

  • Yoon, Sang-Jun;Kim, Young-Ku;Jeon, Chang-Joon;Lee, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.860-865
    • /
    • 2012
  • Although biomass syngas is very low calorific gas, it is utilized by means of dual fuel combustion technology in the fields of industrial furnace and boiler as a substitute oil technology. The basic structure of duel fuel combustion burner is designed so that low caloric gas fuel is supplied around an oil burner in the middle. In the present study, three types of mixing burners were manufactured to conduct performance experiment. Low caloric gas was evenly distributed around the oil burner and the method of changing the angle of gas nozzle was applied. CO generation decreased according to the increase of the amount of air for combustion. In addition, the shapes and colors of flame changed according to the proportions of gas and oil used. Remained flame after combustion was from the lack of atomization at the exit of oil burner. Although it was difficult to maintain the optimum air ratio due to different required air ratio for oil and syngas, stable combustion was able to maintained within excess oxygen concentration of 4.7~8.2%. From this study, it was shown that the oil atomization at the exit of fuel oil nozzle was promoted by the increased rate of syngas combustion and the CO concentration in flue gas lower than only fuel oil combustion.

Preparation Technique of Foam-Floater to Level Gauge of LPG Tank with High Pressure (LPG 고압탱크 레벨 게이지(Level Gauge)용 발포부표 제조 기술)

  • Kim, Byoung-Sik;Hong, Joo-Hee;Chung, Yongjae;Heo, Kwang-Beom
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.361-368
    • /
    • 2006
  • The purpose of this study is to invent the preparation technique of the foam-floater used as a level gauge of liquefied petroleum gas (LPG) tank under high pressure, which has not only closed pores but also has under 5 wt% changingrate in case of depositing 72 h in room-temperature LPG. In pressure-resistance and deposition experiment, the prepared foam-floaters with different sulfur (325 Mesh and 400 Mesh) and foaming agent (dinitrosopentamethylenetetramin; DPT and azodicarbonamide; AC) had a marginal difference in its weight changing-rate. However, the prepared floater with sulfur 400 Mesh and the foaming agent AC had smaller pores and higher closed pore-rate. Under $50kg_f/cm^3$ hydraulic pressure, the floater with medium thermal (MT) carbon showed a lower weight changing-rate than semi reinforcing furnace (SRF) carbon. Providing a post-treatment to the prepared floater, the hardness and the pressure-resistance of the inner pore-wall of floater were increased. Prepared floaters having a specific gravity below 0.30 were distorted and broken, and other floaters with a specific gravity above 0.35 were not useful as a floater because of the low buoyancy. Therefore, it was considered that the floaters with a specific gravity between 0.3~0.35 are the most useful as a floater under $50kg_f/cm^3$ pressure-resistance.

A Study on Iron Manufacturing and Technology through Analysis Reports of Iron artifacts in the Baekje Area (유물분석 자료를 통한 백제지역의 제철과 철기 제작기술 연구)

  • Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.30 no.4
    • /
    • pp.335-343
    • /
    • 2014
  • This study classified the result of non-metallic inclusion analysis and result of microstructure investigation on the ironware excavated in the Baekje region into Han River, Geum River, and Yeongsan River to estimate the iron making temperature and study the characteristics of regional and temporal characteristics of the heat treatment technology and steel making technology. Regardless of era, bloom iron and sponge iron are judged to be the major method for making as a directreduction process in all three regions. The result of the reinterpretation of the non-metallic inclusion by the oxide ternary constitutional diagram suggest that the temperature inside of the furnace is estimated to be between $1,100{\sim}1,300^{\circ}C$ while making the steel. The magnetic iron ores are the major raw material of steel ore and irons with high $TiO_2$ are estimated to use iron sands. Ironware with $CaO/SiO_2$ rate higher than 0.4% are considered to have artificially added the flux of calcareous materials. It was found that the iron making method is the solid caburizing-steel which caburizes low-carbon steels by the CO gas and $CO_2$ gas created when heating the forging furnace with charcoal. Also, the ironware manufacturers in the Baekje during 3rd century recognized the heat treatment technology as they performed carburizing process and quenching to intentionally increase the strength of necessary parts.

Study on Calcination Characteristics of Limestones for In-Furnace Desulfurization in Oxy-Fuel Combustion (순산소연소 조건에서 석회석의 소성특성 및 로내탈황에 관한 연구)

  • An, Young-Mo;Jo, Hang-Dae;Choi, Won-kil;Park, Yeong-Sung;Keel, Sang-In;Lee, Hyung-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.371-377
    • /
    • 2009
  • In oxy-fuel combustion, $CO_2$ concentration in the flue gas may be enriched up to 95% owing to the gas recirculation. Under the high $CO_2$ concentration, the calcination characteristic of limestone is different from that of the conventional air combustion system. In this study, three types of limestone taken from different regions in Korea were used as $SO_2$ absorbent and their calcination characteristics depending on calcination temperature were investigated. The experiments were performed to examine the effects of operating variables such as absorbent species, reaction temperatures on the $SO_2$ removal efficiency and reacted limestone particles were captured to examine the sulfur contents. The degree of calcination and the specific surface area increased with calcination temperature and $SO_2$ removal efficiency increased with reaction temperature. The results showed remarkable difference in $SO_2$ removal efficiencies between the limestone types. The sulfur content of the reacted limestone with the highest $SO_2$ removal efficiency was about 10%.

A study on the black core formation of artificial lightweight aggregates at various sintering atmospheres (인공경량골재의 소성조건이 블랙코어에 미치는 영향)

  • Kim, Yoo-Taek;Ryu, Yu-Gwang;Jang, Chang-Sub;Lee, Ki-Gang;Kang, Seung-Gu;Kim, Jung-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.6
    • /
    • pp.318-323
    • /
    • 2009
  • The lightweight aggregates made of bottom ash (70 wt%) and dredged soil (30 wt%) were prepared to investigate the property differences at various sintering atmospheres. The green aggregates were sintered at $1150^{\circ}C$ and $1200^{\circ}C$ with oxidized, neutralized and reduced atmospheres. The aggregates sintered with oxidized atmosphere showed a clear border between shell and black core area. However, the aggregates sintered with a reduced atmosphere showed only black core area in the entire cross-section of the aggregates. The black core area of the aggregates sintered with a neutralized atmosphere increased with increasing $N_2$ gas flow rates. It was determined that the sintering atmosphere was similar to that of rotary kiln when the CO gas flow was 100 cc/min to make a reduced atmosphere in tube furnace. The water absorption rates of both aggregates from tube furnace with reduced atmosphere and rotary kiln were very similar to each other.

Basic Properties of Alkali-activated Mortar With Additive's Ratio and Type of Superplasticizer (감수제 종류 및 첨가율 변화에 따른 알칼리 활성 모르타르의 기초적 특성)

  • Han, Cheon-Goo;Chang, Ji-Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.50-57
    • /
    • 2015
  • Portland cement production is under critical review due to high amount of $CO_2$ gas released to the atmosphere. Attempts to increase the utilization of a by-products such as fly ash and ground granulated blast-furnace slag to partially replace the cement in concrete are gathering momentum. Many researchs on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. Instead, the sources of material such as fly ash, that are rich in Silicon(Si) and Aluminium(Al), are activated by alkaline liquids to produce the binder. Hence concrete with no cement is effect reduction of $CO_2$ gas. In this study, we investigated the influence of the fluidity, air content and compressive strength of mortar on alkaline activator in order to develop cementless fly ash and ground granulated blast-furnace slag based alkali-activated mortar with superplasticizer. In view of the results, we found out that Pn of fluidity and compressive strength is the best in four type of superplasticizer, and PNS of powder type of fluidity is better than that of liquid type in the case of AA.