• Title/Summary/Keyword: Gas Furnace

Search Result 602, Processing Time 0.027 seconds

Safe Disposal of the 35mm CS Gas Grenades Launcher Set (35mm CS 가스탄 발사셋의 안전처리)

  • Lee, Jong-Chol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1147-1152
    • /
    • 2010
  • This paper reports a safe and environmentally-benign demilitarization method for the K305 35mm CS gas grenades launcher set(also known as E-8 launcher). The launcher system was disposed by a two-step process; complete recovery of the explosive cords and the gas grenades from the launcher followed by incineration of the recovered items in the APE-1236 Flashing Furnace. All of the 64 grenades within the 16 tubes of the E-8 launcher were safely recovered and incinerated. In this study, 32 sets of the launcher were used to make a standard operating procedure for the safe demilitarization of the launcher system and the 35mm CS cartridges were all safely destroyed in the experimental burning tests meeting the related environmental regulations.

A Study on the Structure Properties of Plasma Silicon Oxynitride Film (플라즈마 실리콘 OXYNITRIDE막의 구조적 특성에 관한 고찰)

  • 성영권;이철진;최복길
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.483-491
    • /
    • 1992
  • Plasma silicon oxynitride film has been applied as a final passivation layer for semiconductor devices, because it has high resistance to humidity and prevents from alkali ion's penetration, and has low film stress. Structure properties of plasma silicon oxynitride film have been studied experimentally by the use of FT-IR, AES, stress gauge and ellipsometry. In this experiment,Si-N bonds increase as NS12TO/(NS12TO+NHS13T) gas ratio increases. Peaks of Si-N bond, Si-H bond and N-H bond were shifted to high wavenumber according to NS12TO/(NS12TO+NHS13T) gas ratio increase. Absorption peaks of Si-H bond were decreased by furnace anneal at 90$0^{\circ}C$. The atomic composition of film represents that oxygen atoms increase as NS12TO/(NS12TO+NHS13T) gas ratio increases, to the contrary, nitrogen atoms decrease.

  • PDF

Soot Generation System Utilizing High-Temperature Furnace (고온로를 이용한 매연발생장치)

  • Cho, Sanghwan;Park, Sunho;Nam, Younwoo;Choi, Yoo youl;Lee, Wonnam
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.55-58
    • /
    • 2013
  • A new soot particle generation system has been developed and tested. The soot generation system consists of two sections, a fuel supply and a soot production. In the fuel supply module, either liquid fuel precisely controlled by a syringe pump is mixed with preheated carrier gas and rapidly evaporated or gaseous fuel controlled by a MFC is diluted with dilution gas. The soot production module contains a heater that can raise the gas/fuel temperature up to $1400^{\circ}C$. The physical and chemical properties of produced soot particles depend on the type and concentration of fuel, the residence time, and temperature in the soot production section. The soot generation system will be utilized to produce well-defined soot particles for soot studies such as the evaluation of experimental sampling and analysis processes for the quantitative assessment of PM and BC from ships and the adverse health effects on pulmonary and cardiovascular systems of human body.

  • PDF

The Effect of the Y-jet Nozzle Exit Orifice Shape on Asymmetric Spray (Y-jet 노즐의 출구오리피스 형상이 비대칭 분무에 미치는 영향)

  • Baik, Gwang Yeol;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.33-39
    • /
    • 2021
  • Y-jet nozzle has a wide fuel flow rate range and turn-down ratio, thus, it is used in industrial boilers, furnace and agricultural atomizer. However, it has asymmetrical spray characteristics due to the nozzle design factors. Therefore, in this study, asymmetric spraying characteristics of the elliptical Y-jet nozzle was studied by using the lab-scale spray apparatus. As a result, the elliptical Y-jet nozzle had lower gas mass flow rate than circular Y-jet nozzle at same gas pressure, because of bigger shear stress due to the wider inner surface at the elliptical Y-jet nozzle. Larger SMD was measured on the elliptical Y-jet nozzle than the circular Y-jet nozzle. When SMD was measured in the X_Axis direction at the same gas mass flow rate, the elliptical Y-jet nozzle with an aspect ratio of 2:1 showed greater asymmetry than the others.

Development of Controlled Gas Nitriding Furnace : Controlled Gas Nitriding Technology and Present Situation in Korea (질화포텐셜 제어 가스질화로 개발(I) : 제어질화 및 국내 기술 현황)

  • Won-Beom Lee;Sukwon Son
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.40-46
    • /
    • 2023
  • Controlled nitriding is a technology that controls the nitriding potential based on the gas partial pressure received through an IOT-based sensor. Controlled nitriding is characterized by easy control of the phase of the nitride compound and excellent reproducibility of quality. In particular, it is possible to form a compound layer of excellent quality with fewer pores on the surface. However, despite these advantages, the application of controlled nitriding still needs to be improved in Korea. This paper explains the characteristics of controlled nitriding and describes the future direction and the problems of controlled nitriding in Korea.

Study on Boron-bead Combustion Characteristics for High Energy Gas Generator (고에너지 가스발생기용 보론 비드의 연소특성 연구)

  • Han, Doo-Hee;Kang, Jeong-Seok;Shin, Jun-Su;Sung, Hong-Gye;Shin, Kyung-Hoon;Choi, Sung-Han;Hwang, Kab-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.26-32
    • /
    • 2014
  • The combustion characteristics of Boron-beads to improve the energy density of gas generator has been investigated in accordance with diameter of beads and their composition. In this paper, electrically heated tungsten sheet and visualized furnace are applied to measure ignition temperature and burning time of bead respectively. The results proposes ignition temperature between 720~800 K and burning time proportional to bead diameter. Also a ignition delay of boron particle is detected through the temperature and radiation intensity measurements.

Properties of the Flowability and Strength of Cementless Alkali-Activated Mortar Using the Mixed Fly Ash and Ground Granulated Blast-Furnace Slag (플라이애쉬와 고로슬래그 미분말의 혼합 사용한 무시멘트 알칼리 활성 모르터의 유동성 및 강도 특성)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.114-121
    • /
    • 2010
  • Portland cement production is under critical review due to high amount of CO2 gas released to the atmosphere. Attempts to increase the utilization of a by-products such as fly ash and ground granulated blast-furnace slag to partially replace the cement in concrete are gathering momentum. But most of by-products is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. However, most study deal only with alkali-activated ground granulated blast furnace slag or fly ash, as for the combined use of the both, little information is reported. In this study, we investigated the influence of mixture ratio of fly ash/ blast furnace slag tand curing condition on the flowability and compressive strength of mortar in oder to develop cementless alkali-activated concrete. In view of the results, we found out that the mixture ratio of fly ash/blast furnace slag always results to be significant factors. But the influence of curing temperature in the strength development of mortar is lower than the contribution due to other factors. At the age of 28days, the mixture 50% fly ash and 50% ground granulated blast furnace slag activated with 1:1 the mass ratio of 9M NaOH and sodium silicate, develop compressive strength of about 65 MPa under $20^{\circ}C$ curing.

  • PDF

The Influence of Sintering Atmosphere on the Reduction Behaviour of Refractory Bricks and the Basic Properties of $UO_{2}$ Pellet

  • Lee, Seung-Jae;Kim, Kyu-Tae;Chung, Bum-Jin
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.279-285
    • /
    • 1998
  • The $UO_2$ pellets are usually sintered under hydrogen gas atmosphere. Hydrogen gas may cause unexpected early failure of the refractory bricks in the sintering furnace. In this work, nitrogen was mixed with hydrogen to investigate the effect of nitrogen gas on a failure machanism of the refractory bricks and on the microstructure of the $UO_2$ pellet. The hydrogen-nitrogen mixed gas experiments show that the larger nitrogen the mixed gas contains, the less the refractory materials are reduced by hydrogen. The weight loss measurements at $1400^{\circ}C$ for fire clay and chamotte refractories containing high content of $SiO_2$ indicate that the weight loss rate for the mixed gas is about half of that for the hydrogen gas. Based on the thermochemical analyses, it is proposed that the weight loss is caused by hydrogen-induced reduction of free $SiO_2$ and/or $SiO_2$ bonded to $Al_2O_3$ in the fire clay and chamotte refractories. However, the retardation of the hydrogen-induced $SiO_2$ reduction rate under the mixed gas atmosphere may be due to the reduction of the surface reaction rate between hydrogen gas and refractory materials in proportion to volume fraction of nitrogen gas in the mixed gas. On the other hand, the mixed gas experiments show that the test data for $UO_2$ pellet still meet the related specification values, even if there exists a slight difference in the pellet microstructural parameters between the cases of the mixed gas and the hydrogen gas.

  • PDF

Improvement of Cooling Water Quality by Coagulation and Sedimentation in Steel Mill (응집침전에 의한 제철공장 냉각수질향상)

  • Jo, Kwan-Hyung;Woo, Dal-Sik;Hwang, Byung-Gi;Lee, Seon-Ju;Park, Duck-Weon
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.5
    • /
    • pp.411-416
    • /
    • 2009
  • This study was initiated to improve the cooling water quality by chemical coagulation and sedimentation in steel mills. Due to the inefficient flocculation in the settling tanks of blast furnace cooling water systems, the solid particles in the cooling water overflow accumulate and clog the cooling system. To protect the cooling water system from such fouling, proper flocculants must be continuously used. Laboratory tests were performed for the indirect cooling water system of a plate mill. The batch test in the gas scrubbing cooling water system of a blast furnace showed that the proposed coagulant was more effective for the improvement of coagulation and sedimentation than the existing one. During the tests, cationic flocculants were more effective than use of only an anionic flocculant. The suggested combination of anionic and cationic flocculants can probably improve the turbidity removal efficiency of the cooling water. Proper control of the overflow rate by the designed residence time would help turbidity removal efficiency in the settling tank. In addition, the settling can be enhanced by adopting rapid and slow mixing alternatively. Scale problems in blast furnace cooling water system were reduced to some extent by efficient settling.

Development of a Hot Water Boiler System with a Rice Hull Furnace (왕겨 연소기(燃燒機)를 이용(利用)한 온수(溫水)보일러 시스템 개발(開發) (I) -실험적(實驗的) 연구(硏究)-)

  • Lee, Y.K.;Park, S.J.;Baek, P.K.;Noh, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.4
    • /
    • pp.31-43
    • /
    • 1987
  • This study was performed to develop a hot water boiler system with small scale automatic rice hull furnace for the multi-purpose use in the farm. For the experiment a prototype hot water boiler system with rice hull furnace was fabricated, which was equipped with automatic hull feeder, igniter and ash removal device. Optimum operational conditions of the prototype: system were analyzed. The results arc summarized as follows. 1. The temperature measured right above the burning surface should be higher than $500^{\circ}C$ combustion. 2. The top zone of the combustion chamber was the most suitable location of the thermocouple to pick up the control temperature for the automatic operation of the rice hull furnace. 3. The content of carbon monoxide in the flue gas was increased with the filling height of burning material but it was less than 0.3 percent in volume in this experiment. When the filling height was expressed as the ratio of rice hull feed rate to the volume of the combustion chamber above the burning surface, the optimum ratio was about $150kg/m^3-h$. 4. The combustion efficiency of the prototype was higher than 95 percent when the feed rate was 1.1 to 2.3 kg/h and moisture content of rice hull was 22.4 percent (w.b.) or less. 5. It was estimated that the optimum operational conditions of the system were 1.3 to 2.0 kg/h in feed rate, 70 to 100 percent in excess air and 500 to $510^{\circ}C$ in control temperature. 6. The efficiency of coil heal exchanger increased with a decrease in feed rate of rice hull. When the rice hull feed rates were 1.1, 1.7 and 2.3 kg/h, the efficiencies of coil heat exchanger were about 34, 30 and 25 percent and heat transfer rates were 5.7, 7.6 and 8.8 MJ/h, respectively. When the flat plate heat exchanger was used in addition to the coil heat exchanger, the efficiency of the heat exchanger system increased to 48 percent.

  • PDF