• Title/Summary/Keyword: Gas Force

Search Result 778, Processing Time 0.023 seconds

A optimized structural design of piston on moving in gas spring elevation working (가스 스프링 Elevation 동작에의 최적화된 피스톤 구조 설계)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8274-8283
    • /
    • 2015
  • Gas springs of the television is to control the piston speed when operating under along stroke(200~300 mm, television elevation)is possible. User by this principle is capable of elevation adjustment. First carried out a flow analysis of the piston. A piston speed adjustment technique for precise pipe type cross-section was examined. The piston structure for flow rate control and elevation action is proposed. This study is the development of a gas spring of more than 50 inch television with a large television stand. Hollow piston rod for optimal control(the outer diameter 19.9 mm, the inner diameter 13.9 mm) was injected into the nitrogen gas(0.3 mm/s) in. As a result, the flow rate the pressure drop of the piston rod as the increase was increased without any change of the external force. As a result, control of the displacement via the gas spring is possible.

A study on the behavior of the piston with varying friction force in the double cylinder-typed extension gas spring (2중 실린더 구조를 갖는 인장 가스스프링의 마찰력 변화에 따른 피스톤 거동에 대한 연구)

  • Jeong, Nam-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.9-14
    • /
    • 2018
  • The function of gas springs is based on the compression of a gas. They are used in a wide variety of industries, and demand for them is increasing. Gas springs can be divided into compression and extension springs. Extension springs have not been studied much in relation to control of the piston speed, unlike compression springs. In this study, the magnitude of the piston rebound pressure was theoretically predicted by calculating the pressure loss in a double-cylinder extension gas spring. Numerical simulations of the piston behavior were carried out for small and large amounts of friction between the piston and the cylinder. FLUENT was used for the simulation with a 6-DOF model and UDF to simulate the behavior of the piston. The calculation regions of the front and rear of the piston were separated, and different types of grids were generated in the regions to implement a dynamic mesh using only a layering method. The results show that the piston returns with the target speed in both cases. However, the patterns of the piston behavior reaching the final speed are different.

Controller Design and Integrated Performance Tests on Nitrogen-Gas Reaction Control System of KSLV-I (나로호 질소가스 추력기시스템 자세제어기 설계 및 종합성능시험)

  • Sun, Byung-Chan;Park, Yong-Kyu;Oh, Choong-Suk;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.195-207
    • /
    • 2012
  • This paper deals with attitude controller design and integrated performance tests on the nitrogen gas reaction control system of KSLV-I. Some major factors which are necessarily required in designing a stabilizing controller of reaction control system are investigated, and the corresponding equations are given. Experimental configurations and test conditions for system level integrated performance tests of the KSLV-I nitrogen gas reaction control system are summarized. It is shown that, based on the experimental data, operational performances of nitrogen gas reaction control system can be analyzed in terms of gas consumption, thrusting force, time delay, and specific impulse. It is also shown that a conformance of the controller to flight can be evaluated. Finally the onboard controller of KSLV-I reaction control system is shown to perform normally with enough stability margin via the first flight test result.

Effect of Substrate Temperature and Post-Annealing on Structural and Electrical Properties of ZnO Thin Films for Gas Sensor Applications

  • Do, Gang-Min;Kim, Ji-Hong;No, Ji-Hyeong;Lee, Gyeong-Ju;Mun, Seong-Jun;Kim, Jae-Won;Park, Jae-Ho;Jo, Seul-Gi;Sin, Ju-Hong;Yeo, In-Hyeong;Mun, Byeong-Mu;Gu, Sang-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.105-105
    • /
    • 2011
  • ZnO is a promising material since it could be applied to many fields such as solar cells, laser diodes, thin films transistors and gas sensors. ZnO has a wide and direct band gap for about 3.37 eV at room temperature and a high exciton binding energy of 60 meV. In particular, ZnO features high sensitivity to toxic and combustible gas such as CO, NOX, so on. The development of gas sensors to monitor the toxic and combustible gases is imperative due to the concerns for enviromental pollution and the safety requirements for the industry. In this study, we investigated the effect of substrate temperature and post-annealing on structural and electrical properties of ZnO thin films. ZnO thin films were deposited by pulsed laser deposition (PLD) at various temperatures at from room temperature to $600^{\circ}C$. After that, post-annealing were performed at $600^{\circ}C$. To inspect the structural properties of the deposited ZnO thin films, X-ray diffraction (XRD) was carried out. For gas sensors, the morphology of the films is dominant factor since it is deeply related with the film surface area. Therefore, the atomic force microscopy (AFM) and field emission scanning electron microscopy (FE-SEM) were used to observe the surface of the ZnO thin films. Furthermore, we analyzed the electrical properties by using a Hall measurement system.

  • PDF

Effect of Carrier Gas Flow Rate on Magnetic Properties of Bi:YIG Films Deposited with Aerosol Deposition Method (에어로졸성막법에 의해 제작된 Bi:YIG 막에 미치는 에어로졸유량의 영향)

  • Shin, Kwang-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.14-18
    • /
    • 2008
  • Bismuth-substituted yttrium iron garnet(Bi:YIG) films, which show excellent magnetic and magneto-optical properties as well as low optical losses by optimizing their deposition and post-annealing condition, have been attracting great attention in optical device research area. In this study, the Bi:YIG thick films were deposited with the aerosol deposition method for the final purpose of applying them to optical isolators. Since the aerosol deposition is based on the impact adhesion of sub-micrometer particles accelerated by a carrier gas to a substrate, the flow rate of carrier gas, which is in proportion to mechanically collision energy, should be treated as an important parameter. The Bi:YIG($Bi_{0.5}Y_{2.5}Fe_5O_{12}$) particles with $100{\sim}500$ nm in average diameter were carried and accelerated by nitrogen gas with the flow rate of 0.5 l/min${\sim}$10 l/min. The coercive force decreased from 51 Oe to 37 Oe exponentially with increasing gas flow rate. This is presumably due to the fact that the optimal collision energy results in reduction of impurity and pore, which makes the film to be soft magnetically. The saturation magnetization decreased due to crystallographical distortion of the film with increasing gas flow rate.

A study on the cross section in pipe type orifice of suitable piston rod moving in gas spring elevation working (가스 스프링 Elevation 동작에 적합한 피스톤 로드 움직임의 관형 오리피스 단면에 관한 연구)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7745-7753
    • /
    • 2015
  • Gas springs of the television is to control the piston speed when operating under along stroke(200~300 mm, television elevation)is possible. User by this principle is capable of elevation adjustment. First carried out a flow analysis of the piston. A piston speed adjustment technique for precise pipe type cross-section was examined. The piston structure for flow rate control and elevation action is proposed. This study is the development of a gas spring of more than 50 inch television with a large television stand. Hollow piston rod for optimal control(the outer diameter 19.9 mm, the inner diameter 13.9 mm) was injected into the nitrogen gas(0.3 mm/s) in. As a result, the flow rate the pressure drop of the piston rod as the increase was increased without any change of the external force. As a result, control of the displacement via the gas spring is possible.

Analysis of the Causes of Accidents Related to 3 Phase 170 kV Gas Insulated Switchgears(GIS) and Preventive Measures (3상 170 kV 가스절연개폐장치(GIS)의 사고 원인 분석 및 예방 대책)

  • Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.41-46
    • /
    • 2011
  • The purpose of this paper is to analyze the causes of accidents related to the 3 phase 170 kV gas insulated switchgear of a power system collected from accident sites to secure data for the prevention of similar accidents and provide important points of view regarding diagnosis for the prevention of accidents involving gas insulated switchgears. The analysis results of the causes of accidents involving gas insulated switchgears showed deformation of the manipulation lever installed at the S-phase, disconnection of the insulation rod connection, melting of the upper conductor, a damaged tulip, damage to the lower spacer and the spacer at the breaker, etc. It is believed from this result that the potential for accidents has expanded due to accumulated energy as a result of repeated deterioration. The carbonization depth of a GIS was formed near the screw (T2, T3) used to secure the lower pole of the S-phase tulip. It is not known what has caused the screws to be extruded and melted. However, it is thought that an unbalanced electromagnetic force, micro-discharge, surface discharge, etc., have occurred at that point. In addition, even though 16 years have passed since its installation, there was no installation defect, act of arson, accidental fire, etc. General periodical inspection and diagnosis failed to find the factors causing the accidents. As a system contained in a closed metal container, it has a high risk factor. Therefore, it is necessary to design, install and operate a GIS in accordance with the standard operational procedure (SOP). In addition, it is necessary to apply conversion technology for periodical SF6 gas analysis and precision safety diagnosis. It is expected that tracking and managing these changes in characteristics by recording the results on the history card will provide a significant accident prevention effect.

Percussive Drilling Application of a Tubular Reciprocating Translational Motion Permanent Magnet Synchronous Motor

  • Zhang, Shujun;Norum, Lars E.;Nilssen, Robert;Lorenz, Robert D.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.419-424
    • /
    • 2012
  • This paper presents a tubular reciprocating translational motion permanent magnet synchronous motor for percussive drilling applications for offshore oil & gas industry. The motor model and rock model are built up by doing force analysis of the motor and analyzing the physical procesof impact. The optimization of input voltage waveforms to maximize the rate of penetration is done by simulations. The simulation results show that the motor can be utilized in percussive drilling applications and achieve a very large impact force. Simulation results for optimization also show that second harmonic input voltage produces a higher rate of penetration than the sine wave and fourth harmonic input voltages.

Evaporative Modeling in n Thin Film Region of Micro-Channel (마이크로 채널내 박막영역에서의 증발 모델링)

  • Park, Kyoung-Woo;Noh, Kwan-Joong;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • A mathematical model of the hydrodynamic and heat transfer performances of two-phase flow (gas-liquid) in thin film region of micro channel is proposed. For the formulation of modeling, the flow of the vapor phase and the shear stress at the liquid-vapor interface are considered. In this work, disjoining pressure and capillary force which drive the liquid flow at the liquid-vapor interface in thin film region are adopted also. Using the model, the effects of the variations of channel height and heat flux on the flow and heat transfer characteristics are investigated. Results show that the influence of variation of vapor pressure on the liquid film flow is not negligible. The heat flux in thin-film region is the most important operation factor of micro cooler system.

Dynamic Characteristics of HDD Slider by Perturbed Finite Element Method (교란 유한요소법을 이용한 하드 디스크 슬라이더의 동특성 해석)

  • Hwang Pyung;Khan Polina V.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.143-148
    • /
    • 2004
  • The numerical analysis of the hard disk drive slider is presented. The pressure distribution was calculated using the finite element method. The generalized Reynolds equation was applied in order to include the gas rarefaction effect. The balance of the air bearing force and preload force was considered. The characteristics of the small vibrations near the equilibrium were studied using the perturbation method. Triangular mesh with variable element size was employed to model the two-rail slider. The flying height, pitching angle, rolling angle, stiffness and damping of the two-rail slider were calculated for radial position changing from the inner radius to the outer radius and for a wide range of the slider crown values. It was found that the flying height, pitching angle and rolling angle were increased with radial position while the stiffness and damping coefficients were decreased. The higher values of crown resulted in increased flying height, pitching angle and damping and decreased stiffness.

  • PDF