• Title/Summary/Keyword: Gas Force

Search Result 778, Processing Time 0.032 seconds

Design of a Height Adjustable Bunker Bed Using a Gas Spring (가스 스프링을 이용한 높이조절 벙커침대 설계)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.19-27
    • /
    • 2021
  • A bunker bed is a type of furniture that efficiently utilizes a narrow indoor space by having a high bed and using the empty space below as a living and storage space. The demand for multi-purpose furniture is increasing due to the recent increase in single-person households and wide-spread shared accommodation. According to the consumer research, one of the major drawbacks of a bunker bed was to get on and off the bed through a ladder or stairs. In order to overcome these problems, it was confirmed that the height adjustment function that can easily adjust the minimum and maximum heights of the bed was necessary. In this study, a height adjustable bunker bed was designed by using a gas spring that generates a repulsive force by the compressed gas inside. The design process consisted of the following three steps: Firstly, the hysteresis characteristics due to a friction and spring constant of a commercial gas spring were confirmed by measuring the repulsive force vs. compressed displacement. Secondly, requirements of the vertical lifting force exerted on the bed against gravity force were derived. Finally, the height-adjustable bed using the four-bar link mechanism was designed with 4 parameters so that the bed weight of 60-70 kgf could be adjusted to 800 mm in height by an affordable initial operation force. The performance was verified through prototype production and the results of vertical displacement and force to move were nearly the same as designed. In addition, an electrically operated height-adjustable bed was also designed with linear actuators and the performance was proved with the prototype.

Carbon Nanotube Oscillator Operated by Thermal Expansion of Encapsulated Gases (삽입 가스의 부피 팽창을 이용한 탄소나노튜브 진동기)

  • Kwon, Oh-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1092-1100
    • /
    • 2005
  • We investigated a carbon nanotube (CNT) oscillator controlled by the thermal gas expansion using classical molecular dynamics simulations. When the temperature rapidly increased, the force on the CNT oscillator induced by the thermal gas expansion rapidly increased and pushed out the CNT oscillator. As the CNT oscillator extruded from the outer nanotube, the suction force on the CNT oscillator increased by the excess van der Waals(vdW) energy. When the CNT oscillator reached at the maximum extrusion point, the CNT oscillator was encapsulated into the outer nanotube by the suction force. Therefore, the CNT oscillator could be oscillated by both the gas expansion and the excess vdW interaction. As the temperature increased, the amplitude of the CNT oscillator increased. At the high temperatures, the CNT oscillator escaped from the outer nanotube, because the force on the CNT oscillator due to the thermal gas expansion was higher than the suction force due to the excess vdW energy. By the appropriate temperature controls, such as the maximum temperature, the heating rate, and the cooling rate, the CNT oscillator could be operated.

아크 용접에서 구동력에 따른 열 및 물질 유동에 관한 연구

  • 김원훈;나석주
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.27-41
    • /
    • 1996
  • In this study the heat transfer and fluid flow of the molten pool in stationary gas tungsten arc welding using argon shielding gas were investigated. Transporting phenomena from the welding arc to the base material surface, such as current density, heat flux, arc pressure and shear stress acting on the weld pool surface, were taken from the simulation results of the corresponding welding arc. Various driving forces for the weld pool convection were considered, self-induced electromagnetic, surface tension, buoyancy, and impinging plasma arc forces. Furthermore, the effect of surface depression due to the arc pressure acting on the molten pool surface was considered. Because fusion boundary has a curved and unknown shape during welding, a boundary-fitted coordinate system was adopted to precisely describe the boundary for the momentum equation. The numerical model was applied to AISI 304 stainless steel and compared with the experimental results.

  • PDF

The Analysis of Dynamic Characteristics and the Control of Compressed Gas Expulsion System Using Electro-Hydraulic Servo Valve (전기.유압 서보밸브를 이용한 압축가스 방출시스템의 동특성 해석 및 제어)

  • Kim Y.M.;Kim J.K.;Han M.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.710-714
    • /
    • 2005
  • A dynamical analysis and PID control of a compressed gas expulsion system is performed. The purpose of this study is to develop a compressed gas discharging system and to verify the validity of the system. The electro-hydraulic servo valve is modeled as a 3th order transfer function to calculate flow force affecting expulsion valve is significantly considered. The friction force in the expulsion valve is considered as a nonliner model of stribeck effect. The dynamic characteristics of this system is examined by the computer simulation. The position control of the expulsion valve is performed by PID controller.

  • PDF

Influence of twisting angle between fixed contact and movable contact on arc driving force in 3petal spiral type vacuum interrupter (3petal spiral type vacuum interrupter에서 가동접점전극과 고정접점전극간의 마주보는 각도의 변화가 아크구동력에 미치는 영향)

  • Kim, Byoung-Chul;Yun, Jae-Hun;Lee, Seung-Soo;Kang, Seong-Hwa;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.480-480
    • /
    • 2008
  • Vacuum circuit breaker(VCB) is now emerging as an alternative of gas circuit breaker(GCB) which uses SF6 gas as insulating material whose dielectric strength is outstanding. But we have to reduce SF6 gas because SF6 gas is one of greenhouse gas and efforts to reduce greenhouse gas are now trend of the world. Therefore, we can say VCB is the optimal alternative of GCB because vacuum is environmentally friendly. The vacuum interrupter is the core part of VCB to interrupt arcing current. There are mainly two methods to extinguish arc. One is radial magnetic field (RMF) method and the other is axial magnetic field (AMF) method. We deals with RMF method in this paper. Compared with AMP, RMF arc quenching method has different principle to extinguish arc. In case of RMF method, pinch effect is much larger than AMF method. Because of pinch effect RMF type contact electrodes have the single large spot which is severly damaged and melted while AMF type contact electrodes have small and multiple spots which are slightly damaged and melted. To prevent contact electrode being damaged and melted from high temperature-arc, RMF method uses Lorentz force to move arc. In this paper we calculated and compared the arc driving force of two cases and we analyzed the force acting on each part of arc by means of commercial finite element method software Maxwell 3D. They have 3petals and we considered two cases. One is the case when fixed(upper) and movable(lower) contacts are in mirror arrangement (Case 1). The other is the case when one of two contacts (movable contact) is revolved at maximum angle as possible as it can be (Case 2). And at each case above, we analyzed arc driving force at two positions, position 1 is the closest to the center of contact and position 2 is near the edge of petal on fixed contact. As a result we could find that Case 2 generated stronger arc driving force than Case 1 at position 1. But at position 2 Case 1 generated stronger arc driving force than Case 2. This simulation method can contribute to optimizing spiral-type electrode designs in a view of arc driving force.

  • PDF

A Study on the Optimal Design of Automotive Gas Spring (차량용 가스스프링의 최적설계에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.45-50
    • /
    • 2017
  • The gas spring is a hydropneumatic adjusting element, consisting of a pressure tube, a piston rod, a piston and a connection fitting. The gas spring is filled with compressed nitrogen within the cylinder. The filling pressure acts on both sides of the piston and because of area difference it produces an extension force. Therefore, a gas spring is similar in function compare to mechanical coil spring. Conversely, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL (Nonlinear Programming by Quadratic Lagrangian) and GA (genetic algorithm) for optimization. The NLPQL method builds a quadratic approximation to the Lagrange function and linear approximations to all output constraints at each iteration, starting with the identity matrix for the Hessian of the Lagrangian, and gradually updating it using the BFGS method. On each iteration, a quadratic programming problem is solved to find an improved design until the final convergence to the optimum design. In this study, we conducted optimization design of the gas spring reaction force with NLPQL.

Shape Design Optimization of Disk Seal in $SF_6$ Gas Safety Valve ($SF_6$ 가스 안전밸브 디스크 시일의 최적설계에 관한 연구)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.231-236
    • /
    • 2004
  • Sulfur Hexafluoride, S $F_{6}$ is widely used for leak detection and as a gaseous dielectric in transformers, condensers and circuit breakers. S $F_{6}$ gas is also effective as a cleanser in the semiconductor industry. This paper presents a numerical study of the sealing force of disk type seal in S $F_{6}$ gas safety valve. The sealing force on the disk seal is analyzed by the FEM method based on the Taguch's experimental design technique. Disk seals in S $F_{6}$ gas safety valve are designed with 9 design models based on 3 different contact length, compressive ratio and gas pressure. The calculated results of Cauchy stress and strain showed that the sealing characteristics of Teflon $^{ }$PTFE is more effective compared to that of FKM(Viton), which is related to the stiffness of the materials. And also, the contact length of the disk seal is important design parameter for sealing the S $F_{6}$ gas leakage in the safety valve.afety valve.

A Study on the Auto-moblie Gas Spring Structural Analysis Using of Bimetal (바이메탈을 이용한 자동차용 가스 스프링 구조해석에 관한 연구)

  • Park, Chul Woo;Kim, Ho Yoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.131-137
    • /
    • 2013
  • Gas springs have been widely used in motor vehicles as well as in most areas of industry. Instead of coil springs, these gas springs are easily operated to extrusion process or compression process the doors because $N_2$ gas with high pressure and oil are charged in tube. Gas spring sustain the constant elasticity change rate in the high reaction force and long stroke, and they have compact design, appearance and an excellent assembling ability to be mounted easily with any applicatory products. By means of these aspects, gas springs have been widely used in stead of coil springs in the over all industries. In this study, using acommonly used program, ANSYS, the basic research about the heat transfer and equivalent stress change of bimetal.

ANALYSIS OF FLUID CHARACTERISTICS OF THRUST BEARING ON MILLIMETER-SCALE MICRO GAS TURBINE (초소형 가스 터빈용 스러스트 베어링 내의 유동특성 해석)

  • Seo, J.H.;Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.258-262
    • /
    • 2010
  • Since MEMS based micro actuators or generating devices showed high efficiency per volume, plenty of research are ongoing. Among them, MEMS based millimeter-scale micro gas turbine is one of the most powerful item for replacing chemical batteries. However, due to MEMS manufacturing technique, it is very difficult that makes wide turbine bearing area. It causes low DN number, so sufficient bearing force is hard to achieve. Thus, the most important issue on micro gas turbine is to design the proper bearing which can keep rotor stable during operation. In order to that, micro-scale gas-lubricated bearing is generally used. In this paper, basic feasibility study of thrust bearing of 10mm diameter turbine is described. Thrust bearing is hydrostatic gas-lubricated type. Numerical simulation is performed with ANSYS CFX 11.0 which is commercial numerical tool. Relationship between bearing inlet pressure and mass flow rate and bearing force is figured while changing bearing gap and number of capillaries. The simulation results will be used for further design of micro gas turbine.

  • PDF

A Study on the Flow Characteristics of Liquid Phase in Air-Water Model (Air-Water 모델에서 액상의 유동특성에 관한 연구)

  • Oh, Yool-Kwon;Seo, Dong-Pyo;Park, Seol-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • In the present study, the gas injection system based on air-water model was designed to investigate the flow characteristics of liquid phase. A PIV system was applied to analyze the flow pattern in a ladle which gas stated to rise upward from the bottom. Gas flow is one of most important factors which could feature a flow pattern in a gas injection system. As the gas injected into the liquid, the kinetic energy of bubble transfer to liquid phase and a strong circulation flow develops in the liquid phase. Such a flow in the liquid develops vortex and improve the mixing process. Due to the centrifugal force, circulation flow was well developed near both wall sides and upper region respectively. Increasing gas flow was helpful to remove dead zone but, weak flow zone still exists in spite of the increasement of gas flow rate.