• Title/Summary/Keyword: Gas Force

Search Result 778, Processing Time 0.022 seconds

Finite Element Analysis of Contact Behavior Characteristics in LPG Filling Unit Depending on Multi-ball/Cylinder Rolling Friction Motions (LPG 충전기에서 다수 볼-실린더의 구름마찰운동에 따라 달라지는 접촉거동특성에 관한 유한요소해석)

  • Kim Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.27-32
    • /
    • 2006
  • In this paper, the contact stress and friction force between multi-balls and rolling friction contact surfaces of two cylinders have been presented using a finite element analysis. The multi-balls for a rolling friction motion may be contacted with a reciprocating mechanism of a parallel cylinder and a misaligned cylinder in a LPG filling unit. The FEM computed results indicate that SiC ceramic and SUS 304 balls show a high contact stress and friction force on the contact spot of rolling balls. But the PEEK balls show a low contact stress and friction loss due to a high flexibility of a PEEK polymer. In this study, we may recommend SiC and SUS 304 balls for high compressive loadings between a multi-ball and a cylinder contact mechanisms and PEEK balls for a low compressive force. And the misalignment between two cylinders should be restricted for a low contact stress and friction loss, especially.

  • PDF

Prediction of Parabolic Antenna Satellite Drag Force in Low Earth Orbit using Direct Simulation Monte Carlo Method (직접모사법을 이용한 지구 저궤도 파라볼릭 안테나 탑재 위성의 항력 예측)

  • Shin, Somin;Na, Kyung-Su;Lee, Juyoung;Cho, Ki-Dae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.616-621
    • /
    • 2014
  • Consumption of the fuel on the satellite operating in low earth orbit, is increased due to the air resistance and the amount of increase makes the satellite lifetime decrease or the satellite mass risen. Therefore the prediction of drag force of the satellite is important. In the paper, drag force and drag coefficient analysis of the parabolic antenna satellite in low earth orbit using direct simulation monte carlo method (DSMC) is conducted according to the mission altitude and angle of attack. To verify the DSMC simulated rarefied air movement, Starshine satellite drag coefficient according to the altitude and gas-surface interaction are compared with the flight data. Finally, from the analysis results, it leads to appropriate satellite drag coefficient for orbit lifetime calculation.

Identification of Load Carrying and Vibration Characteristics of Oil-Free Foil Journal Bearing Structures for High Speed Motors (고속 전동기용 무급유 포일 저널 베어링 구조체의 하중지지 및 진동 특성 규명)

  • Baek, Doo San;Hwang, Sung Ho;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.261-272
    • /
    • 2021
  • This study investigates the structural characteristics of oil-free, gas beam foil journal bearings (GBFJBs) for use in high speed motors. Mathematical modeling was carried out, and reaction force modeling for static load was performed to predict the structural characteristics of the GBFJB. Mathematical modeling and reaction force modeling for static load are performed to predict the structural characteristics of GBFJBs. The reaction force of the test bearing against static loads was measured during experiments and compared with the predicted results. The measured experimental data reveal the nonlinear stiffness characteristics of the GBFJB against varying displacement and agree well with the predictions. Dynamic load tests using an exciter allow to identify the vibration characteristics of the GBFJB. Test results show that the vibration displacement, dynamic force, and acceleration measured on the test bearing are most dominant at the applied dynamic load (synchronization) frequency. Futhermore, the test results show that the hysteresis area recorded during the dynamic tests increases with the excitation amplitude and frequency, and that the beam stick phenomena occurr at high excitation frequencies. The single degree of freedom (DOF) vibration model aids to identify the stiffness and damping coefficient of the GBFJB, which decrease as the excitation frequency increases.

A Numerical Analysis of Flow Characteristics and Oil Separation Performance for Cyclone Oil Separator Designs (사이클론 오일분리 장치 형상변화에 따른 유동 및 오일분리 성능에 관한 해석적 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Woo, Keun-Sup;Yoon, Yu-Bin;Park, Young-Joon;Lee, Dug-Young;Kim, Hyun-Chul;Na, Byung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.22-28
    • /
    • 2008
  • A closed type crankcase ventilation system has been adopted to engines to prevent emission of blow-by gas to atmosphere. In the early closed type crankcase ventilation system, blow-by gas which contains engine lubricating oil is re-circulated into the intake system. The blow-by gas containing oil mist leads to increased harmful emissions and engine problems. To reduce loss of the engine oil, a highly-efficient oil separation device is required. Principle of a cyclone oil separator is to utilize centrifugal force in the separator and, therefore, oil separator designs depend on rotational flow which causes the centrifugal force. In this paper, flow characteristics and oil separation performances for cyclone type designs are calculated with CFD methodology. In the CFD model, oil particle was injected on a inlet surface with Rosin-Rammler distribution and uniform distribution. The major design parameters considered in the analysis model are inlet area, cone length and outlet depth of the oil separator. As results, reducing inlet area and increasing cone length increase oil separation performance. Changes in outlet depth could avoid interference between rotational flow and outlet flow in the cyclone oil separator.

A Study on the Strength Analysis of the Helmets for Fire and Gas Safety (소방.가스안전용 헬멧의 강도안전성에 관한 연구)

  • Kim, Han-Goo;Shim, Jong-Hyun;Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.31-37
    • /
    • 2008
  • In this paper, the strength analysis has been presented for the stress and strain by using the finite element method for various shell models of the helmets. The advanced helmet that would provide head protection without causing discomfort to the user when it was worn for long periods of time should be manufactured for increasing the safety and workability of the workers. We need a safe, comfortable and light weight of the helmet shell structure. Thus, the helmets had to stand up to the most rigorous conditions encountered for the fire and gas explosion. The FEM computed results show that when the impulsive force is applied on the summit area of a helmet shell structure, the maximum stress and strain have been occurred around the position of an applied impact force, which may lead to the initial failure on the summit of the helmet shell. Thus, the summit area of the helmet shell should be supported by a bead frame and increased thickness of the bead. But the overall thickness of the helmet is to decrease for the light weight of a helmet.

  • PDF

Dynamic Stability during Transportation of Bridge Caisson (교량 케이슨 운송의 동적 안정성 고찰)

  • Jo, Chul-Hee;Kim, Sung-Jun;Cheong, Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.104-108
    • /
    • 2009
  • As the demands of ocean resource development increase, many offshore structures are required. To cope with the active ocean developments, many types of construction methods have been applied for offshore facilities, including oil, gas and harbors. One of the challenges is to transport and install the heave bridge caisson. Several construction methods are well understood. However, for the sake of safety and reliability, the F/D installation method can be utilized. While the caisson is carried by an F/D, the mooring force of the tug boat and the structure stability from exiting motions in the dock should be checked against external loadings and sea conditions. The external loads can be classified with wind force, current force, and wave force. In the stability analysis, transportation velocity and draft of F/D are important factors. The dynamic stability and hook load for crane barge installation for the same caisson are also studied. Considering external loads and dominant factors, the stability of caisson during transportation has been investigated.

Partition method of wall friction and interfacial drag force model for horizontal two-phase flows

  • Hibiki, Takashi;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1495-1507
    • /
    • 2022
  • The improvement of thermal-hydraulic analysis techniques is essential to ensure the safety and reliability of nuclear power plants. The one-dimensional two-fluid model has been adopted in state-of-the-art thermal-hydraulic system codes. Current constitutive equations used in the system codes reach a mature level. Some exceptions are the partition method of wall friction in the momentum equation of the two-fluid model and the interfacial drag force model for a horizontal two-phase flow. This study is focused on deriving the partition method of wall friction in the momentum equation of the two-fluid model and modeling the interfacial drag force model for a horizontal bubbly flow. The one-dimensional momentum equation in the two-fluid model is derived from the local momentum equation. The derived one-dimensional momentum equation demonstrates that total wall friction should be apportioned to gas and liquid phases based on the phasic volume fraction, which is the same as that used in the SPACE code. The constitutive equations for the interfacial drag force are also identified. Based on the assessments, the Rassame-Hibiki correlation, Hibiki-Ishii correlation, Ishii-Zuber correlation, and Rassame-Hibiki correlation are recommended for computing the distribution parameter, interfacial area concentration, drag coefficient, and relative velocity covariance of a horizontal bubbly flow, respectively.

Analysis of Operating Characteristics in Tidal Power Generation According to Tide Level

  • Hong, Jeong-Jo;Oh, Young-sun
    • International Journal of Contents
    • /
    • v.18 no.1
    • /
    • pp.76-84
    • /
    • 2022
  • Tidal power generation plays a critical role in reducing greenhouse gas emissions. It uses a tidal force generated by gravitational force between the moon, the earth, and the sun. The change of seawater height generates the tide-generating force, and the magnitude of the change is the tide level. The tide level change has the same period as the tide-generating force twice a day, every 29.5 days, every year, and every 18.6 years. Sihwa Lake Tidal Power Station is Korea's first tidal power plant that began commercial power generation in August 2011 and has been accumulating a large volume of data on electricity production, power generation sales, sluice displacement, and tide levels. The purpose of this paper was to analyze the impact of the inefficiency factors affecting production and the tidal level change on tidal power generation and their characteristics using Sihwa Lake Tidal Power's operational performance data. Throughout this paper we show that tidal power generating operation is accurately predicting the trends of magnitude of tidal force to be periodical for each day. determining the drop to initiate the water turbine generator factoring the constraints on the operation of Sihwa Lake, and reflecting the water discharge through the floodgate and water turbine during the standby mode in the power generation plan to be in the optimal condition until the initiation of the next power generation can maximize power generation.

Quality Changes of Centella asiatica by Slow-released ClO2 Gas Gel-pack during Storage (서방형 이산화염소 가스 젤팩을 이용한 병풀의 저장 중 품질 변화)

  • Lee, Kyung-Haeng;Yu, Kwang-Won;Bae, Yun-Jung;Han, Ki-Jung;Jang, Da-Bin
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.4
    • /
    • pp.247-252
    • /
    • 2022
  • To improve the shelf-life of Centella asiatica, Centella asiatica was treated with gel packs containing slow-released chlorine dioxide (ClO2) gas at 3-5 ppm for 20 days at 4℃. The weight loss rate, as well as the changes in pH, color, and texture of the treated samples, were investigated. The weight of the control and ClO2 gas-treated samples was decreased during the storage period. The change in weight of the control was slightly faster than that of the samples treated with 3 and 4 ppm ClO2 gas. The pH of the control and the ClO2 gas treated samples were decreased during the storage period and there was no significant difference between the control and ClO2 gas treated samples. Concerning color (lightness, redness, and yellowness) changes of Centella asiatica during the storage period, there was no significant difference between the control and ClO2 gas treated samples. The change in shear force in the leaf and stem of Centella asiatica during the storage period was slightly lower in the 4 ppm ClO2 gas treated samples (in the leaf) compared to the control and 3 and 4 ppm ClO2 gas treated samples (in the stem) compared to the control and 5 ppm ClO2 gas treated sample.

A Study on the Effect of External Electromagnetic force in MIG Welding (MIG 용접 시 외부 전자기력이 미치는 영향에 관한 연구)

  • Kim Jae Seong;Kim Yong;Ryu Deok Hui;Lee Bo Yeong
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.171-173
    • /
    • 2004
  • Electromagnetic force is one of the most important factor that effect on metal transfer mode, short-circuit rate, spatter generation rate and mechanical properties of weld metal etc. Also, shielding gas and welding current have influence on metal transfer mode in GMAW. In this paper, different ways for external electromagnetic forces are applied by attaching cylindrically rounded conducting wire solenoid on touch tip holding. With the applied electromagnetic field, the arc transfer mode changes from normal mode to rotating mode and spatter generation decreased in electromagnetic fields(N-pole). In MIG welding, the influences of electromagnetic force on the spatter generation showed different tendency as in the $CO_2$ welding. It is possible reasons were discussed.

  • PDF