• Title/Summary/Keyword: Gas Flow Correction

Search Result 29, Processing Time 0.027 seconds

Development of a Load Measurement System for Vehicles using Tire Pressure System Technology (타이어 공기압 시스템 기술을 사용한 차량의 적재중량 측정 시스템 개발)

  • Park, Jae-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • In this paper, we propose the design technique of the vehicle's load weight measuring system using tire pressure, which is one of the physical elements of tires. The proposed technique consists of four processes: noise correction by load and vibration, gas flow correction, data mixer and weight conversion. Noise correction by load and vibration eliminates noise that increases the tire's internal pressure due to external shocks and vibrations produced by the vehicle while it is in motion. In the gas flow correction process, the noise of the internal pressure of the tire is increased due to the temperature rise of the ground with respect to the data obtained through the noise correction process due to the load and vibration. In the data mixer process, the load and pressure on the tolerances the empty, median and the full load are classified according to the change in pressure of the tire that is delivered perpendicular to the tire in the event of cargo. In the weight conversion process, weight is expressed by weight through weight conversion algorithms using noise correction results by load and vibration and gas flow correction. The weight conversion algorithm calculates the weight conversion factor, which is the slope of the linear function with respect to the load and pressure change, and converts the weight. In order to evaluate the accuracy of the loading weight measurement system of the vehicle using the tire pneumatic system technique proposed in this paper, we propose the design technique of the vehicle's load weight measuring system using tire pressure, which is one of the physical elements of tires.. Noise correction results by load and vibration and gas flow data correction results showed reliable results. In addition, repeated weight precision test showed better weight accuracy than the standard value of 90% of domestic companies.

Effects of Posture Correction Training on Pulmonary Function with Turtle Neck Syndrome (자세교정훈련이 거북목증후군의 폐기능에 미치는 영향)

  • Jang, Cheul
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.1
    • /
    • pp.183-192
    • /
    • 2021
  • Purpose : The purpose of this study was to investigate the impact of postural correction training on pulmonary function on 28 college students suspected of turtle neck syndrome, and the following conclusions were obtained. Methods : Turtle neck syndrome suspicion 28 person were randomly divided into a posture training group (n = 14) and group that does not perform posture training (n = 14). Respiratory function was measured by SPIROVIT SP-1 and respiratory gas analyzer. The posture training group performed balloon blowing and stair climbing after 20 minutes of posture training, and the group without posture training carried out balloon blowing training and stair climbing. Five times a week and for two weeks. Results : 1. The comparison of the FVC before and after experiments caused by balloon blowing showed a higher level of effortful pulmonary function in the control group than in the experimental group. 2. Comparison of PEFs before and after the experiment by balloon blowing showed that the experimental group's peak flow rate was higher than that of the control group. 3. Comparison of the FIVC before and after experiments with balloon blowing showed that the comparison of the FIVC showed a higher level of effortless intake pulmonary function in the control group than in the experimental group. 4. The comparison of the maximum ventilation volume(VE) before and after the experimental gas measurement showed that the maximum ventilation rate of the experimental group was higher than that of the control group. 5. The comparison of pre-test and post-test heart rate(HR) by breath gas measurement showed that the heart rate of the control group was higher than that of the experimental group. Conclusion : the results of this study showed that postural correction training, balloon blowing training, and stair climbing could have a positive impact on improving pulmonary function. However, the two-week experiment conducted five times a week showed an increase in pulmonary function, but it was difficult to see the effect due to the short study period. Therefore, it is hoped that later studies will be conducted more systematically on the effects of breathing exercises on improving pulmonary function after post-postural correction training for patients with pulmonary function problems.

Influence on heat transfer due to uneven flow (유동 불균일이 전열관 튜브에 미치는 영향)

  • Chong, Chae-Hon;Song, Jung-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.273-279
    • /
    • 2008
  • The purpose of this study is not only to evaluate thermal performance but also to find the stress behavior of heat transfer tubes under the part load operation in Heat Recovery Steam Generator. Flow analysis was performed to know the behavior of exhaust gas from gas turbine and thermal performance was calculated using distribution of hot exhaust velocity. In addition, tubes temperature during operation were gathered from actual plant to verify the uneven flow distribution under part load operation. Stress analysis was performed using tubes temperature data gathered from actual plant under both part and full load operations to know the stress behavior of tubes.

  • PDF

Pressure Correction Method and Slip Boundary Conditions for Microflows (미소유동 해석을 위한 압력수정기법 및 미끄럼 경계조건)

  • Choi, Hyung-Il;Maeng, Joo-Sung;Lee, Do-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.430-435
    • /
    • 2001
  • This paper introduces a pressure correction method for microflow computation. Conventional CFD methods with no slip boundary condition fail to predict the rarefaction effect of the wall when simulating gas microflows in the slip-flow regime. Pressure correction method with an appropriate slip boundary condition is an efficient tool in analyzing microscale flows. The present unstructured SIMPLE algorithm adopts both the classical Maxwell boundary condition and Langmuir boundary condition proposed by Myong. The simulation results of microchannel flows show that the proposed method has an effective predictive capability for microscale flows.

  • PDF

A Study on the Characteristics of the Electronic EGR Valve for Gasoline Engine (가솔린엔진용 E-EGR 밸브 특성에 관한 연구)

  • Park, Cheol-Woong;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.127-133
    • /
    • 2008
  • Since the 1960's, exhaust gas recirculation(EGR) has been used effectively in spark ignition(SI) engines to control the exhaust emissions of the oxides of nitrogen(NOx). The most important requirements for the application of EGR systems to conventional SI engines are controllable flow rate and good dynamic response. In order to evaluate the characteristics of the electronic EGR valve, a test bench which is consisted of blower, heater, air flow meter and driving unit for electronic EGR valve was set up to simulate engine operating conditions. During the tests, the valve actuation parameters were controlled and the valve lifts and flow rates were measured to infer the characteristics of EGR valve. The results confirmed the capabilities of mathematical analysis and it seems that the correction for the valve lift and potentiometer output is necessary to achieve precise control of EGR rates.

Data processing of sensor output for correction of pressure measurement value of an anesthesia ventilator (마취기용 인공호흡기의 압력 측정값의 보정을 위한 센서 출력의 데이터 처리)

  • 박영준;이종수;김영길
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1067-1070
    • /
    • 1999
  • Anesthesia gas to pour to patients affects the flow and volume as the pressure difference of an oxygen and an anesthesia gas. An anesthesia gas, being injurious and polluting an environment, must control the pressure of an oxygen gas because of being used by closing up tight. But a pressure sensor to use for measuring an oxygen gas appears other pressure as the characteristic and the error difference of elements to use for implementing an system. A medical machine such as an anesthesia ventilator must be accurate because of using for the person's body. So we intend to implement an system for a sensor pressure measurement not to be change regardless of an environment. This papers is the target that a sensor pressrue measurement to be changed in environment is equal to actual sensor pressure measurement. So an implemented system is using analog filter and digital filter to reduce a noise. And we are using auto-zeroing and calibration to correct a sensor pressure which is changed in environment. Through such a process we increase the accuracy and the confidence of an anesthesia ventilator by controlling the flow of an anesthesia gas.

  • PDF

가스터빈 엔진 천이 성능 시험에 의한 정상상태 성능 예측

  • Yang, In-Young;Jun, Yong-Min;Kim, Chun-Taek;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • Methodology of predicting steady performance of gas turbine engine from transient test data was explored to develop an economic performance test technique. Discrepancy of transient performance from steady performance was categorized as dynamic, thermal and aerodynamic transient effects. Each effect was mathematically modeled and quantified to provide correction factors for calculating steady performance. The influence of engine inlet/outlet condition change on engine performance was corrected firstly, and then steady performance was predicted from the correction factors. The result was compared with steady performance test data. This correction method showed an acceptable level of precision, 3.68% difference of fuel flow.

  • PDF

A REAL GAS SOLUTION ALGORITHMS FOR MULTI-PHASE FLOW ANALYSIS (다상 유동 해석을 위한 압축성 실제기체 해법)

  • Han S.H.;Choi J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.187-194
    • /
    • 2005
  • For the analysis of compressible multi-phase and real gas flows, characteristic form of Roe's Riemann solver was derived using real gas equation of state. It was extended to multi component reactive system considering variable specific heat. From this study, it is known that some correction should be made for the use of existing numerical algorithm. 1) Sonic speed and characteristic variable should be corrected with real gas effect. 2) Roe's average was applicable only with the assumption of constant properties. 3) Artificial damping term and characteristic variables should be corrected but their influences may not be significant.

  • PDF

Temperature Measurement Method with Radiation Correction for Very High Temperature Gas (복사 간섭 보정을 통한 초고온 가스 온도 측정 방법)

  • Kim, Chan-Soo;Hong, Sung-Deok;Seo, Dong-Un;Kim, Yong-Wan;Lee, Won-Jae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2059-2063
    • /
    • 2008
  • When a thermocouple is placed in a high temperature gas-flow stream, the measured temperature could be biased from the true gas temperature due to a large radiation heat loss from a thermocouple surface to its surroundings. In this study, two thermocouples of unequal diameters with 1/8 inch and 1/16 inch are used to correct the radiation effect. The method is called the reduced radiation error (RRE). The preliminary test results show that the radiation and the sheath conduction cannot be negligible for the gas temperature measurement. To minimize the sheath conduction effect, all the thermocouples will have a grounded junction and 1/8 inch thermocouple will be replaced with 1 mm thermocouples. In addition, the computational fluid dynamics code analysis shows that there is a negligible temperature difference between the positions where the thermocouples were installed.

  • PDF

CONSTRAINING THE MAGNETIC FIELD IN THE ACCRETION FLOW OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

  • QIAO, ERLIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.457-459
    • /
    • 2015
  • Observations show that the accretion flows in low-luminosity active galactic nuclei (LLAGNs) probably have a two-component structure with an inner hot, optically thin, advection dominated accretion flow (ADAF) and an outer truncated cool, optically thick accretion disk. As shown by Taam et al. (2012), within the framework of the disk evaporation model, the truncation radius as a function of mass accretion rate is strongly affected by including the magnetic field. We define the parameter ${\beta}$ as $p_m=B^2/8{\pi}=(1-{\beta})p_{tot}$, (where $p_{tot}=p_{gas}+p_m$, $p_{gas}$ is gas pressure and $p_m$ is magnetic pressure) to describe the strength of the magnetic field in accretion flows. It is found that an increase of the magnetic field (decreasing the value of ${\beta}$) results in a smaller truncation radius for the accretion disk. We calculate the emergent spectrum of an inner ADAF + an outer truncated accretion disk around a supermassive black hole by considering the effects of the magnetic field on the truncation radius of the accretion disk. By comparing with observations, we found that a weaker magnetic field (corresponding to a bigger value of ${\beta}$) is required to match the observed correlation between $L_{2-10keV}/L_{Edd}$ and the bolometric correction $k_{2-10keV}$, which is consistent with the physics of the accretion flow with a low mass accretion rate around a black hole.